• Title/Summary/Keyword: Buckling interaction

Search Result 130, Processing Time 0.029 seconds

Strength buckling predictions of cold-formed steel built-up columns

  • Megnounif, A.;Djafour, M.;Belarbi, A.;Kerdal, D.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.443-460
    • /
    • 2008
  • The aim of this paper is to propose a design procedure for predicting the buckling strength of built-up, cold-formed steel columns based on the two well known methods; the effective width method and the Direct Strength Method. Several design approaches, based on different elastic buckling solutions, were considered in this investigation. Traditional hand methods, without interaction effects between the different modes, and a new numerical spline finite strip method were used to predict the buckling stresses. All of the proposed methods were compared with experimental data on plain and lipped, built-up columns. Results have shown that the effective width approaches are more accurate than the Direct Strength Method. However, both methods can be investigated using more experimental data to assess a practical design method for built-up columns.

Cellular and corrugated cross-sectioned thin-walled steel bridge-piers/columns

  • Ucak, Alper;Tsopelas, Panos
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.355-374
    • /
    • 2006
  • Thin walled steel bridge-piers/columns are vulnerable to damage, when subjected to earthquake excitations. Local buckling, global buckling or interaction between local and global buckling usually is the cause of this damage, which results in significant strength reduction of the member. In this study new innovative design concepts, "thin-walled corrugated steel columns" and "thin-walled cellular steel columns" are presented, which allow the column to undergo large plastic deformations without significant strength reduction; hence dissipate energy under cyclic loading. It is shown that, compared with the conventional designs, circular and stiffened box sections, these new innovative concepts might results in cost-effective designs, with improved buckling and ductility properties. Using a finite element model, that takes the non-linear material properties into consideration, it is shown that the corrugations will act like longitudinal stiffeners that are supporting each other, thus improving the buckling behavior and allowing for reduction of the overall wall thickness of the column.

A Study on the Buckling Strength of Stern Skeg Shell Plate (선미 스케그 외판의 좌굴강도에 관한 연구)

  • Choi, Kyung-Shin;Seol, Sang-Seok;Kim, Jin-Woo;Kong, Seok-Hwan;Chung, Won-Jee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.80-87
    • /
    • 2021
  • Most container ships are currently being constructed as Ultra-Large Container Ships. Hence, the equipment of the ships is also becoming relatively large. In particular, propellers, rudders, and rudder stocks are large in the stern structure, and in relation, efficient design of the hull structures to safely secure these parts is important. The bottom shell plate surface of a stern skeg is a perforated plate from which the rudder stock penetrates, so it is an important component for the stern structure. In this paper, to determine the critical buckling of the shell plate, an interaction curve equation for the two-axis compression of the shell plate was derived using the maximum value of the static structural stress multiplier in a load multiplier mode. This equation predicts the timing of the buckling occurrence. By analyzing this interaction curve equation, the buckling behavior of the plates subjected to a combination load was determined and the usefulness of applying it to ship building was investigated.

Seismic behavior of deep-sea pipeline after global buckling under active control

  • Jianshuo Wang;Tinghao Meng;Zechao Zhang;Zhihua Chen;Hongbo Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.261-267
    • /
    • 2024
  • With the increase in the exploitation depth of offshore oil and gas, it is possible to control the global buckling of deep-sea pipelines by the snake lay method. Previous studies mainly focused on the analysis of critical buckling force and critical temperature of pipelines under the snake-like laying method, and pipelines often suffer structural failure due to seismic disasters during operation. Therefore, seismic action is a necessary factor in the design and analysis of submarine pipelines. In this paper, the seismic action of steel pipes in the operation stage after global buckling has occurred under the active control method is analyzed. Firstly, we have established a simplified finite element model for the entire process cycle and found that this modeling method is accurate and efficient, solving the problem of difficult convergence of seismic wave and soil coupling in previous solid analysis, and improving the efficiency of calculations. Secondly, through parameter analysis, it was found that under seismic action, the pipe diameter mainly affects the stress amplitude of the pipeline. When the pipe wall thickness increases from 0.05 m to 0.09 m, the critical buckling force increases by 150%, and the maximum axial stress decreases by 56%. In the pipe soil interaction, the greater the soil viscosity, the greater the pipe soil interaction force, the greater the soil constraint on the pipeline, and the safer the pipeline. Finally, the pipeline failure determination formula was obtained through dimensionless analysis and verified, and it was found that the formula was accurate.

Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes

  • Tounsi, Abdelouahed;Benguediab, Soumia;Adda Bedia, El Abbas;Semmah, Abdelwahed;Zidour, Mohamed
    • Advances in nano research
    • /
    • v.1 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • The thermal buckling properties of double-walled carbon nanotubes (DWCNTs) are studied using nonlocal Timoshenko beam model, including the effects of transverse shear deformation and rotary inertia. The DWCNTs are considered as two nanotube shells coupled through the van der Waals interaction between them. The geometric nonlinearity is taken into account, which arises from the mid-plane stretching. Considering the small-scale effects, the governing equilibrium equations are derived and the critical buckling temperatures under uniform temperature rise are obtained. The results show that the critical buckling temperature can be overestimated by the local beam model if the nonlocal effect is overlooked for long nanotubes. In addition, the effect of shear deformation and rotary inertia on the buckling temperature is more obvious for the higher-order modes. The investigation of the thermal buckling properties of DWCNTs may be used as a useful reference for the application and the design of nanostructures in which DWCNTs act as basic elements.

Evaluation of unilateral buckling of steel plates in composite concrete-steel shear walls

  • Shamsedin Hashemi;Samaneh Ramezani
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.129-140
    • /
    • 2023
  • To increase the stiffness and strength of a reinforced concrete shear wall, steel plates are bolted to the sides of the wall. The general behavior of a composite concrete-steel shear wall is dependent on the buckling of the steel plates that should be prevented. In this paper, the unilateral buckling of steel plates of a composite shear wall is studied using the Rayleigh-Ritz method. To model the unilateral buckling of steel plate, the restraining concrete wall is described as an elastic foundation with high stiffness in compression and zero stiffness in tension. To consider the effect of bolt connections on the plate's buckling, a constrained optimization problem is solved by using Lagrange multipliers method. This process is used to obtain the critical elastic local buckling coefficients of unilaterally-restrained steel plates with various numbers of bolts, subjected to pure compression, bending and shear loading, and the interaction between them. Using these results, the spacing between shear bolts in composite steel plate shear walls is estimated and compared with the results of the AISC seismic provisions (2016). The results show that the AISC seismic provisions(2016) are overly conservative in obtaining the spacing between shear bolts.

Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.143-153
    • /
    • 2018
  • Thermal buckling of nonlocal flexoelectric nanoplates incorporating surface effects is analyzed for the first time. Coupling of strain gradients and electrical polarizations is introduced by flexoelectricity. It is assumed that flexoelectric nanoplate is subjected to uniform and linear temperature distributions. Long range interaction between atoms of nanoplate is modeled via nonlocal elasticity theory. The residual surface stresses which are usually neglected in modeling of flexoelectric nanoplates are incorporated into nonlocal elasticity to provide better understanding of the physic of problem. A Galerkin-based approach is implemented to solve the governing equations derived from Hamilton's principle are solved. The verification of obtained results is performed by comparing buckling loads of flexoelectric nanoplate with previous data. It is shown that buckling loads of flexoelectric nanoplate are significantly affected by thermal loading type, temperature change, nonlocal parameter, surface effect, plate thickness and boundary conditions.

Critical buckling loads of carbon nanotube embedded in Kerr's medium

  • Bensattalah, Tayeb;Bouakkaz, Khaled;Zidour, Mohamed;Daouadji, Tahar Hassaine
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.339-356
    • /
    • 2018
  • In this article, the critical buckling of a single-walled carbon nanotube (SWCNT) embedded in Kerr's medium is studied. Based on the nonlocal continuum theory and the Euler-Bernoulli beam model. The governing equilibrium equations are acquired and solved for CNTs subjected to mechanical loads and embedded in Kerr's medium. Kerr-type model is employed to simulate the interaction of the (SWNT) with a surrounding elastic medium. A first time, a comparison with the available results is made, and another comparison between various models Winkler-type, Pasternak-type and Kerr-type is studied. Effects of nonlocal parameter and aspect ratio of length to diameter of nanobeam, as well as the foundation parameters on buckling of CNT are investigated. These results are important in the mechanical design considerations of nanocomposites based on carbon nanotubes.

In-plane buckling strength of fixed parabolic arch (고정지점 포물선 아치의 면내 좌굴강도)

  • Moon, Ji Ho;Yoon, Ki Yong;Cho, Yong Rae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.301-310
    • /
    • 2006
  • If arches are braced by lateral restraints, the ultimate strength of arches is determined by in-plane buckling and plastic bending collapse. This paper is conducted to investigate the in-plane nonlinear elastic and inelastic buckling behavior and the strength of fixed parabolic arches in uniform compresion, as well as to study arch behaviors against non-uniform in-plane compression and bending. As shown by the results, the limit slenderness ratio is suggested to classify the bucklingmode. Buckling strength of fixed parabolic arches under uniform compresion are evaluated using buckling curve for a straight column. Finally, an interaction e quation for arches under combined axial compresion and bending action is proposed.

Experimental and analytical study on the shear strength of corrugated web steel beams

  • Barakat, Samer;Leblouba, Moussa
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.251-266
    • /
    • 2018
  • Compared to conventional flat web I-beams, the prediction of shear buckling stress of corrugated web steel beams (CWSBs) is not straightforward. But the CWSBs combined advantages of lightweight large spans with low-depth high load-bearing capacities justify dealing with such difficulties. This work investigates experimentally and analytically the shear strength of trapezoidal CWSBs. A set of large scale CWSBs are manufactured and tested to failure in shear. The results are compared with widely accepted CWSBs shear strength prediction models. Confirmed by the experimental results, the linear buckling analyses of trapezoidal corrugated webs demonstrated that the local shear buckling occurs only in the flat plane folds of the web, while the global shear buckling occurs over multiple folds of the web. New analytical prediction model accounting for the interaction between the local and global shear buckling of CWSBs is proposed. Experimental results from the current work and previous studies are compared with the proposed analytical prediction model. The predictions of the proposed model are significantly better than all other studied models. In light of the dispersion of test data, accuracy, consistency, and economical aspects of the prediction models, the authors recommend their proposed model for the design of CWSBs over the rest of the models.