• Title/Summary/Keyword: Buckling analysis

Search Result 1,753, Processing Time 0.031 seconds

An Approximate Method for the Buckling Analysis of a Composite Lattice Rectangular Plate

  • Kim, Yongha;Kim, Pyunghwa;Kim, Hiyeop;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.450-466
    • /
    • 2017
  • This paper defines the modified effective membrane stiffness, bending stiffness considering the directionally dependent mechanical properties and mode shape function of a composite lattice rectangular plate, which is assumed to be a Kirchhoff-Love plate. It subsequently presents an approximate method of conducting a buckling analysis of the composite lattice rectangular plate with various boundary conditions under uniform compression using the Ritz method. This method considers the coupled buckling mode as well as the global and local buckling modes. The validity of the present method is verified by comparing the results of the finite element analysis. In addition, this paper performs a parametric analysis to investigate the effects of the design parameters on the critical load and buckling mode shape of the composite lattice rectangular plate based on the present method. The results allow a database to be obtained on the buckling characteristics of composite lattice rectangular plates. Consequently, it is concluded that the present method which facilitates the calculation of the critical load and buckling mode shape according to the design parameters as well as the parametric analysis are very useful not only because of their structural design but also because of the buckling analysis of composite lattice structures.

Buckling Design of Temporary Bridges Subjected to Both Bending and Compression (압축과 휨을 동시에 받는 가교량 주요부재의 좌굴설계)

  • So Byoung-Hoon;Kyung Yong-Soo;Bang Jin-Hwan;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.977-984
    • /
    • 2006
  • Generally main girders and steel piers of temporary bridges form the steel rahmen structure. In this study, the rational stability design procedure for main members of temporary bridges is presented using 3D system buckling analysis and second-order elastic analysis. 2 types of temporary bridges, which are possible to be designed and fabricated in reality, are chosen and the buckling design for them is performed considering load combinations of dead and live loads, thermal load, and wind load. Effective buckling length of steel piers, effects of live loads on effective length of main members, transition of ~id buckling modes, and effects of second-order analysis are investigated through case study of 2 temporary bridges.

  • PDF

Comparison of alternative algorithms for buckling analysis of slender steel structures

  • Dimopoulos, C.A.;Gantes, C.J.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.219-238
    • /
    • 2012
  • Objective of this paper is to compare linear buckling analysis formulations, available in commercial finite element programs. Modern steel design codes, including Eurocode 3, make abundant use of linear buckling loads for calculation of slenderness, and of linear buckling modes, used as shapes of imperfections for nonlinear analyses. Experience has shown that the buckling mode shapes and the magnitude of buckling loads may differ, sometimes significantly, from one algorithm to another. Thus, three characteristic examples have been used in order to assess the linear buckling formulations available in the finite element programs ADINA and ABAQUS. Useful conclusions are drawn for selecting the appropriate algorithm and the proper reference load in order to obtain either the classical linear buckling load or a good approximation of the actual geometrically nonlinear buckling load.

Analysis on the Elastic Shear Buckling Characteristics of Corrugated Steel Plate in Accordance with Corrugation Shape (형상에 따른 주름강판의 탄성전단좌굴 특성 및 경향성 분석 연구)

  • Shon, Su-Deok;Yoo, Mi-Na;Lee, Seung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.11-20
    • /
    • 2014
  • This paper aims at comparing and analyzing shear buckling characteristics between sinusoidal corrugation shape and trapezoidal one. For this, I adopted the equal-length trapezoidal corrugation and sinusoidal one for the analytical models, and analyzed their shear buckling characteristics through linear buckling analysis and on its theory. Generally, the shear buckling shapes of corrugated steel plates are classified into local buckling, global buckling, and interactive buckling from the two buckling modes. Sinusoidal corrugation shape, unlike trapezoidal corrugation, does not have flat sides, which causes another tendency in shear buckling mode. Especially, the changes and different aspects of shear buckling on the boundary between local buckling and global buckling appear in different corrugation shapes. According to the analysis results, interactive buckling mode appeared on the boundary of local buckling and global bucking in trapezoidal corrugation. However, in the case of corrugated steel plates with sinusoidal configuration, interactive buckling mode appeared in the part where global bucking takes place. Besides, trapezoidal shapes are of advantages on shear buckling resistance in the local buckling section, and so are sinusoidal shapes in the global buckling section.

Numerical vibration correlation technique analyses for composite cylinder under compression and internal pressure

  • Do-Young Kim;Chang-Hoon Sim;Jae-Sang Park;Joon-Tae Yoo;Young-Ha Yoon;Keejoo Lee
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.419-429
    • /
    • 2023
  • This study conducts numerical analyses of a thin-walled composite cylinder under axial compression and internal pressure of 10 kPa. Numerical vibration correlation technique and nonlinear postbuckling analyses are conducted using the nonlinear finite element analysis program, ABAQUS. The single perturbation load approach and measured imperfection data are used to represent the geometric initial imperfection of thin-walled composite cylinder. The buckling knockdown factors are derived using present initial imperfection and analysis methods under axial compression without and with the internal pressure. Furthermore, the buckling knockdown factors are compared with the buckling test and computation time are calculated. In this study, derived buckling knockdown factors in present study have difference within 10% as compared with the buckling test. It is shown that nonlinear postbuckling analysis can derive relatively accurate buckling knockdown factor of present thin-walled cylinders, however, numerical vibration correlation technique derives reasonable buckling knockdown factors compared with buckling test. Therefore, this study shows that numerical vibration correlation technique can also be considered as an effective numerical method with 21~91% reduced computation time than nonlinear postbuckling analysis for the derivation of buckling knockdown factors of present composite cylinders.

Buckling Analysis of Laminated Composite Plates (복합적층평판의 좌굴해석)

  • 원종진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.23-28
    • /
    • 1998
  • In this paper, the experimental and numerical results of buckling loads for laminated composite plates are compared. Using boundary conditions of buckling test are all fixed supports. Experiments were conducted for plates with fiber angles $ heta$=30$^{\circ}$, 45$^{\circ}$,60$^{\circ}$ and aspect ratio a/b=0.8. Experimental results were obtained from load-deflection curves of buckling test. Numerical methods were presented to evaluate buckling loads, using structural analysis results from ANSYS.

  • PDF

Test and Analysis of Triaxially Braided Composite Circular Arch under Three-Point Bending

  • Nega, Biruk F.;Woo, Kyeongsik;Lee, Hansol
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.249-257
    • /
    • 2019
  • In this paper, the buckling behavior of triaxially braided circular arch with monosymmetric open section subjected to three-point bending was studied experimentally and numerically. First, test specimens were manufactured using vacuum assisted resin transfer molding (VARTM). Then the specimen was tested under three-point bending to determine the ultimate buckling strength. Before performing the numerical analysis, effective material properties of the braided composite were obtained through micro-meso scale analysis virtual testing validated with available test results. Then linear buckling analysis and geometrically non-linear post buckling analysis, established to simulate the test setup, were performed to study the buckling behavior of the composite frame. Analysis results were compared with experimentally obtained ones for verification. The effect of manufacturing defects of tow misalignment, irregular surface and resin rich region, and uncertainties during test setup were studied using numerical models. From the numerical analyses performed it was observed that both manufacturing defect and uncertainties had effect on the buckling behavior and strength.

Buckling analysis and optimal structural design of supercavitating vehicles using finite element technology

  • Byun, Wan-Il;Kim, Min-Ki;Park, Kook-Jin;Kim, Seung-Jo;Chung, Min-Ho;Cho, Jin-Yeon;Park, Sung-Han
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.274-285
    • /
    • 2011
  • The supercavitating vehicle is an underwater vehicle that is surrounded almost completely by a supercavity to reduce hydrodynamic drag substantially. Since the cruise speed of the vehicle is much higher than that of conventional submarines, the drag force is huge and a buckling may occur. The buckling phenomenon is analyzed in this study through static and dynamic approaches. Critical buckling load and pressure as well as buckling mode shapes are calculated using static buckling analysis and a stability map is obtained from dynamic buckling analysis. When the finite element method (FEM) is used for the buckling analysis, the solver requires a linear static solver and an eigenvalue solver. In this study, these two solvers are integrated and a consolidated buckling analysis module is constructed. Furthermore, Particle Swarm Optimization (PSO) algorithm is combined in the buckling analysis module to perform a design optimization computation of a simplified supercavitating vehicle. The simplified configuration includes cylindrical shell structure with three stiffeners. The target for the design optimization process is to minimize total weight while maintaining the given structure buckling-free.

Buckling of Bimodulus Composite Thin Plate (이중탄성계수 복합재료판의 좌굴)

  • 이영신;김종천
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1520-1534
    • /
    • 1994
  • A new analytical method for the prediction of the buckling behavior of laminated plates consisting of layers having different properties in tension and compression, so called bimodulus, is proposed in this paper. Buckling analysis of bimodular composite laminated paltes are performed with the results reduced from plate bending analysis. The governing equations of bimodular plates are based on the first shear deformation theory. As a case study, bending and buckling of simply supported, multilayered, symmetric, antisymmtric, and specially orthotropic laminates under uniformly distributed lateral load for bending analysis and in-plane load for buckling are considered. The results of the bending analysis are compared with the previous papers. Then, the fundamental critical buckling loads and buckling modes are calculated for the various bimodular composite rectangular thin plates.

Thermomechanical buckling of rectangular, shear-deformable, composite laminated plates

  • Ge, Y.S.;Yuan, W.X.;Dawe, D.J.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.411-428
    • /
    • 2002
  • The B-spline finite strip method is developed for the prediction of the buckling of rectangular composite laminated plates under the combined action of applied uniaxial mechanical stress and increasing temperature. The analysis is conducted in two stages, namely an in-plane stress analysis in the pre-buckling stage to determine the pre-buckling stresses, followed by a buckling analysis using these determined stresses. The buckling analysis is based on the use of first-order shear deformation plate theory. The permitted lay-up of the laminates is quite general, within the constraint that the plate remains flat prior to buckling, and a wide range of boundary conditions can be accommodated. A number of applications is described and comparison of the results generated using the finite strip method is made with the results of previous studies.