• Title/Summary/Keyword: Buckling Stress

Search Result 669, Processing Time 0.024 seconds

Post buckling mechanics and strength of cold-formed steel columns exhibiting Local-Distortional interaction mode failure

  • Muthuraj, Hareesh;Sekar, S.K.;Mahendran, Mahen;Deepak, O.P.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.621-640
    • /
    • 2017
  • This paper reports the numerical investigation conducted to study the influence of Local-Distortional (L-D) interaction mode buckling on post buckling strength erosion in fixed ended lipped channel cold formed steel columns. This investigation comprises of 81 column sections with various geometries and yield stresses that are carefully chosen to cover wide range of strength related parametric ratios like (i) distortional to local critical buckling stress ratio ($0.91{\leq}F_{CRD}/F_{CRL}{\leq}4.05$) (ii) non dimensional local slenderness ratio ($0.88{\leq}{\lambda}_L{\leq}3.54$) (iii) non-dimensional distortional slenderness ratio ($0.68{\leq}{\lambda}_D{\leq}3.23$) and (iv) yield to non-critical buckling stress ratio (0.45 to 10.4). The numerical investigation is carried out by conducting linear and non-linear shell finite element analysis (SFEA) using ABAQUS software. The non-linear SFEA includes both geometry and material non-linearity. The numerical results obtained are deeply analysed to understand the post buckling mechanics, failure modes and ultimate strength that are influenced by L-D interaction with respect to strength related parametric ratios. The ultimate strength data obtained from numerical analysis are compared with (i) the experimental tests data concerning L-D interaction mode buckling reported by other researchers (ii) column strength predicted by Direct Strength Method (DSM) column strength curves for local and distortional buckling specified in AISI S-100 (iii) strength predicted by available DSM based approaches that includes L-D interaction mode failure. The role of flange width to web depth ratio on post buckling strength erosion is reported. Then the paper concludes with merits and limitations of codified DSM and available DSM based approaches on accurate failure strength prediction.

Buckling treatment of piezoelectric functionally graded graphene platelets micro plates

  • Abbaspour, Fatemeh;Arvin, Hadi
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.337-353
    • /
    • 2021
  • Micro-electro-mechanical systems (MEMS) are widely employed in sensors, biomedical devices, optic sectors, and micro-accelerometers. New reinforcement materials such as carbon nanotubes as well as graphene platelets provide stiffer structures with controllable mechanical specifications by changing the graphene platelet features. This paper deals with buckling analyses of functionally graded graphene platelets micro plates with two piezoelectric layers subjected to external applied voltage. Governing equations are based on Kirchhoff plate theory assumptions beside the modified couple stress theory to incorporate the micro scale influences. A uniform temperature change and external electric field are regarded along the micro plate thickness. Moreover, an external in-plane mechanical load is uniformly distributed along the micro plate edges. The Hamilton's principle is employed to extract the governing equations. The material properties of each composite layer reinforced with graphene platelets of the considered micro plate are evaluated by the Halpin-Tsai micromechanical model. The governing equations are solved by the Navier's approach for the case of simply-supported boundary condition. The effects of the external applied voltage, the material length scale parameter, the thickness of the piezoelectric layers, the side, the length and the weight fraction of the graphene platelets as well as the graphene platelets distribution pattern on the critical buckling temperature change and on the critical buckling in-plane load are investigated. The outcomes illustrate the reduction of the thermal buckling strength independent of the graphene platelets distribution pattern while meanwhile the mechanical buckling strength is promoted. Furthermore, a negative voltage, -50 Volt, strengthens the micro plate stability against the thermal buckling occurrence about 9% while a positive voltage, 50 Volt, decreases the critical buckling load about 9% independent of the graphene platelet distribution pattern.

A Study on the Behavior Characteristics of Residual Stress of the Thin Butt Weldment by Mechanical Tensioning Method (인장법에 의한 박판 판계 용접부의 잔류 응력 거동 특성에 관한 연구)

  • Kim, Ha-Keun;Kim, Kyung-Ku;Shin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.57-57
    • /
    • 2010
  • For thin panel welded structure, the various welding distortions were found due to the low resistance against welding deformation. Especially, buckling distortion induced in the thin panel welded structure produce severe problems related to cost in production stage and safety in service life. So, many researches including mechanical and thermal tensioning method for preventing the occurrence of buckling distortion in the production stage have been performed. The purpose of this study is to identify the behavior of longitudinal residual stress at the SA butt weldment with thin plate of 6mm thickness under tension load by 3 dimensional FEA. For it, mesh design for 3D FEA was constructed with 20 nodes brick element for butt weldment and 8 nodes shell element for base metal. According to FEA results, the longitudinal compressive strain inducing tensile residual stress at the butt weldment decreased. It was because the compressive thermal strain in way of weldment was reduced by tension load. The control effect of residual stress increased with an increase in tension load. So, if the amount of tension load applied to the weldment exceeds 1.5 times of longitudinal shrinkage force, the amount of longitudinal residual stress decreased below the critical value inducing the buckling distortion at the SA butt weldment. Its validity was verified by experiment.

  • PDF

Local Buckling Behavior of Cold-Formed Channel Columns under Compression at Elevated Temperatures (압축을 받는 냉간성형 C-형강 기둥의 온도상승에 따른 국부좌굴 특성)

  • Baik, Tai Soon;Kang, Sung Duk;Kang, Moon Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.433-442
    • /
    • 2004
  • This paper discusses the development of a computer program to analyze elastic local buckling stress based on Eurocode 3 Part 1.3 for the flange and web of cold-formed channel columns under compression at elevated temperatures. The high-temperature, stress-strain relationships of the steel used in this paper were determined according to Eurocode 3 Part 1.2. The critical temperatures and the elastic local buckling stresses of cold-formed channel columns under compression at elevated temperatures were analyzed with the computer program developed in this study. Analysis examples were given to show the applicability of the computer program.

Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory

  • Hadi, Amin;Nejad, Mohammad Zamani;Rastgoo, Abbas;Hosseini, Mohammad
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.663-672
    • /
    • 2018
  • This paper contains a consistent couple-stress theory to capture size effects in Euler-Bernoulli nano-beams made of three-directional functionally graded materials (TDFGMs). These models can degenerate into the classical models if the material length scale parameter is taken to be zero. In this theory, the couple-stress tensor is skew-symmetric and energy conjugate to the skew-symmetric part of the rotation gradients as the curvature tensor. The material properties except Poisson's ratio are assumed to be graded in all three axial, thickness and width directions, which it can vary according to an arbitrary function. The governing equations are obtained using the concept of minimum potential energy. Generalized differential quadrature method (GDQM) is used to solve the governing equations for various boundary conditions to obtain the natural frequencies of TDFG nano-beam. At the end, some numerical results are performed to investigate some effective parameter on buckling load. In this theory the couple-stress tensor is skew-symmetric and energy conjugate to the skew-symmetric part of the rotation gradients as the curvature tensor.

Improvement of hysteretic constitutive model for reinforcements considering buckling

  • Weng Weipeng;Xie Xu;Wang Tianjia;Li Shuailing
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.57-67
    • /
    • 2023
  • The buckling of longitudinal reinforcements under seismic loading accelerates the degradation of the bearing capacity of reinforced concrete columns. The traditional hysteretic constitutive model of reinforcement, which does not consider buckling, usually overestimates the seismic performance of pier columns. Subsequent researchers have also proposed many models including the buckling effects. However, the accuracy of these hysteretic constitutive models proposed for simulating the buckling behavior is inadequate. In this study, based on their works, the influence of historical events on buckling is considered, the path of the re-tensioning phase is corrected by adjusting the boundary lines, and the positions of the onset buckling point and compressive buckling path during each buckling deformation are corrected by introducing correction parameters and a boundary line. A modified hysteretic constitutive model is obtained, that can more accurately reflect the buckling behavior of reinforcements. Finally, a series of hysteresis tests of reinforcements with different slenderness ratios were then conducted. The experimental results verify the effectiveness of the proposed modified model. Indicating that the modified model can more accurately simulate the equivalent stress-strain relationship of the buckling reinforcement segment.

Stress analysis of a new steel-concrete composite I-girder

  • Wang, Yamin;Shao, Yongbo
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • A new I-girder consisted of top concrete-filled tubular flange and corrugated web has been proved to have high resistance to both global buckling of the entire girder and local buckling of the web. This study carries out theoretical analysis and experimental tests for this new I-girder to investigate the stress distribution in the flanges and in the corrugated web. Based on some reasonable assumptions, theoretical equations for calculating the normal stress in the flanges and the shear stress in the corrugated web are presented. To verify the accuracy of the presented equations, experimental tests on two specimens were carried out, and the experimental results of stress distribution were used to assess the theoretical prediction. Comparison between the two results indicates that the presented theoretical equations have enough accuracy for calculating the stress in the new I-girder, and thus they can be used reliably in the design stage.

The Fracture Distribution in ITO Coating with Compressive Bending Stress on Polymer Substrates

  • Lee, Sang-Keuk;Lee, Joon-Ung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.6
    • /
    • pp.5-8
    • /
    • 2003
  • In this paper, we investigated the fracture distribution in indium-tin-oxide (ITO) coating with compressive bending stress on polymer. Under compressive strain, the ITO island delaminates, buckles and cracks. As the mechanical compressive stress increases, the buckling width of ITO seems to be increased. These created cracks are related to well-defined distribution of mechanical stress in ITO island-arrays. We related. mechanical bending stress to crack distribution and derived theoretical equation of position-dependent bending stress. And, we verified the bending stress's magnitude to crack distribution observed from optical photographs.

Elastic Local Buckling Analysis of Orthotropic Structural Shapes Using Bleich's Approximate Method (Bleich의 근사해법을 이용한 직교이방성 구조용부재의 탄성국부좌굴해석)

  • Lee, Won Bok;Yoon, Soon Jong;Lee, Seok Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.795-805
    • /
    • 1994
  • This paper presents the analytical results for the prediction of elastical local buckling stress of fiber reinforced plastic (orthotropic) structural shapes manufactured from pultrusion process. In the derivation, existing Bleich's approach which was originally derived for the isotropic structural shapes was extended and non-dimensionalized parameters which can simplify the numerical calculations were adopted. Analytical results were compared with reported closed-form solutions and experimental results. It is graphically shown that the results can be used effectively to predict the local buckling stress of pultruded fiber reinforced plastic structural shapes. Numerical results were presented graphically to estimate the local buckling stress of various cross-sectional dimensions and lengths of columns. In addition, limits of width to thickness ratio of flange and web of pultruded structural shapes were suggested in which material failure or overall buckling occurs prior to local buckling.

  • PDF

Ultimate Strength varying the Yield Stress of a Ship's Plate (선체판의 항복응력 변화에 따른 최종강도거동에 관한 연구)

  • Ko Jae-Yong;Lee Jun-Kyo;Park Joo-Shin
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.179-183
    • /
    • 2005
  • The High-tensile steel has been recognized as a promising concept for structural design of light weight transportation systems such as aircraft high speed trains and fast ships. Using the high-tensile steel has been widely used in ship structures, and this enables to reduce the plate thickness. Using the high-tensile steel effectively for a ship hull, the plate thickness becomes thin so that plate buckling may take place. Therefore, precise assessment of the behavior of plate above primary buckling load is important. In this study, examined closely secondary buckling behavior after initial buckling of thin plate structure which operated compressive load according to the various kinds of yield stress with simply supported boundary condition. Analysis method is F.E.M by commercial program(ANSYS V7.1) and complicated nonlinear behaviour can analyze using art-length method about secondary buckling.

  • PDF