• Title/Summary/Keyword: Buck

Search Result 897, Processing Time 0.022 seconds

A Study on the Characteristic analyses of High Performance Buck-Boost Converter added Electric Isolation (고성능 절연형 벅-부스트 컨버터의 특성 해석에 관한 연구)

  • Kwak, Dong-Kurl;Jung, Do-Young;Lee, Bong-Seob;Kim, Choon-Sam;Shim, Jae-Sun;Yang, Ki-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.142-144
    • /
    • 2008
  • This paper is studied on the characteristic analyses of a high performance buck-boost converter added electric isolation by using a soft switching method. To be achieved of a high performance system, the proposed buck-boost converter is constructed by using a partial resonant circuit. The control switches using in the converter are operated with soft switching for a Partial resonant method. The controlling switches are operated without increasing their voltage and current stresses by the soft switching technology. The result is that the switching loss is very low and the converter efficiency is high. And the proposed converter is added in a electric isolation. When the power conversion system is required to electric isolation, the proposed converter is adopted with the system development of high efficiency. The soft switching operation and system efficiency of the proposed converter is verified by digital simulation and experimental results.

  • PDF

Design of a 2kW Bidirectional Synchronous DC-DC Converter for Battery Energy Storage System (배터리 에너지 저장장치용 고효율 2kW급 양방향 DC-DC 컨버터 설계)

  • Lee, Taeyeong;Cho, Byung-Geuk;Cho, Younghoon;Hong, Chanook;Lee, Han-Sol;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.312-323
    • /
    • 2017
  • This paper introduces the bidirectional dc-dc converter design case study, which employs silicon-carbide (SiC) MOSFETs for battery energy storage system (BESS). This converter topology is selected as bidirectional synchronous buck converter, which is composed of a half bridge converter, an inductor, and a capacitor, where the converter has less conduction loss than that of a unidirectional buck and boost converter, and to improve the converter efficiency, both the power stage design and power conversion architecture are described in detail. The conduction and switching losses are compared among three different SiC devices in this paper. In addition, the thermal analysis using Maxwell software of each switching device supports the loss analyses, in which both the 2 kW prototype analyses and experimental results show very good agreement.

A Development of an Occupant Packaging Tool Using 3-Dimensional Coordinates in Passenger Vehicle's Driver Space (3차원 좌표를 이용한 승용차 운전공간의 설계기법 개발)

  • Chung, Sung-Jae;Park, Min-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.3
    • /
    • pp.257-264
    • /
    • 2000
  • This research suggested a method by which the driver space can be designed to best accommodate the driver's anthropometric characteristics. Three-dimensional manikins and a variable seating buck were developed and used for this study. Manikins were designed with 18 links comprising the 95th percentile male and 5th percentile female data. The seating buck was built to create various driving environments using the distance and the height between the H-point(hip pivot) of the seat and the AHP(accelerator heel point), the angle of the back rest, the angle of the steering wheel, the vertical distance of the steering wheel, and the location of the T.G.S.(transmission gear shift) knob. Measurements of each variable were collected with a coordinate measuring machine by positioning the 3-D manikin under various combinations of the design factors of the seating buck, which was constructed based on mid-size domestic passenger cars. The data were then converted to the joint angles of the driver. The combination of the measurements for an optimal driving environment is suggested by applying sets of the joint angles at which the driver feels comfortable.

  • PDF

Transformerless Three-Level DC-DC Buck Converter with a High Step-Down Conversion Ratio

  • Zhang, Yun;Sun, Xing-Tao;Wang, Yi-Feng;Shao, Hong-Jun
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.70-76
    • /
    • 2013
  • For high power high step-down dc-dc conversion applications, conventional three-level dc-dc converters are subject to extreme duty cycles or increased volume and cost due to the use of transformers. In this paper, a transformerless three-level dc-dc buck converter with a high step-down conversion ratio is proposed. The converter comprises two asymmetrical half bridges, which are of the neutral point clamped structures. Therefore, the output pulse voltage of the converter can be obtained in terms of the voltage difference between the two half bridges. In order to realize harmonious switching of the converter, a modulation strategy with capacitor voltages self balance is presented. According to the deduced output dc voltage function, transformerless operation without extreme duty cycles can be implemented. Experimental results from a 1kW prototype verify the validity of the proposed converter. It is suitable for ship electric power distribution systems.

Design of monolithic DC-DC Buck converter with on chip soft-start circuit (온칩 시동회로를 갖는 CMOS DC-DC 벅 변환기 설계)

  • Park, Seung-Chan;Lim, Dong-Kyun;Lee, Sang-Min;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.568-573
    • /
    • 2009
  • This paper presents a step-down DC-DC converter with On-chip Compensation for battery-operated portable electronic devices which are designed in O.13um CMOS standard process. In an effort to decrease system volume, this paper proposes the on chip compensation circuit using capacitor multiplier method. Capacitor multiplier method can minimize error amplifier's compensation capacitor size by 10%. It allows the compensation block of DC-DC converter be easily integrated on a chip and occupy less layout area. But capacitor multiplier operation reduces DC-DC converter efficiency. As a result, this converter shows maximum efficiency over 87.2% for the output voltage of 1.2V (input voltage : 3.3V), maximum load current 500mA, and 25mA output ripple current. This voltage mode controled buck converter has 1MHz switching frequency.

Effect of Circuit Parameters on Stability of Voltage-fed Buck-Boost Converter in Discontinuous Conduction Mode

  • Feng, Zhao-He;Gong, Ren-Xi;Wang, Qing-Yu
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1283-1289
    • /
    • 2014
  • The state transition matrix are obtained by solving state equations in terms of Laplace inverse transformation and Cayley-Hamilton theorem, and an establishment of a precise discrete-iterative mapping of the voltage-fed buck-boost converter operating in discontinuous conduction mode is made. On the basis of the mapping, the converter bifurcation diagrams and Lyapunov exponent diagrams with the input voltage, the resistance, the inductance and the capacitance as the bifurcation parameters are obtained, and the effect of the parameters on the system stability is deeply studied. The results obtained show that they have a great influence on the stability of the system, and the general trend is that the increase of either the voltage-fed coefficient, input voltage or the load resistance, or the decrease of the filtering inductance, capacitance will make the system stability become poorer, and that all the parameters have a critical value, and when they are greater or less than the values, the system will go through stable 1T orbits, stable 2T orbits, 4T orbits, 8T orbits and eventually approaches chaos.

The Optimal Controller Design of Buck-Boost Converter by using Adaptive Tabu Search Algorithm Based on State-Space Averaging Model

  • Pakdeeto, Jakkrit;Chanpittayagit, Rangsan;Areerak, Kongpan;Areerak, Kongpol
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1146-1155
    • /
    • 2017
  • Normally, the artificial intelligence algorithms are widely applied to the optimal controller design. Then, it is expected that the best output performance is achieved. Unfortunately, when resulting controller parameters are implemented by using the practical devices, the output performance cannot be the best as expected. Therefore, the paper presents the optimal controller design using the combination between the state-space averaging model and the adaptive Tabu search algorithm with the new criteria as two penalty conditions to handle the mentioned problem. The buck-boost converter regulated by the cascade PI controllers is used as the example power system. The results show that the output performance is better than those from the conventional design method for both input and load variations. Moreover, it is confirmed that the reported controllers can be implemented using the realistic devices without the limitation and the stable operation is also guaranteed. The results are also validated by the simulation using the topology model of MATLAB and also experimentally verified by the testing rig.

A Study on Excitation System for Synchronous Generator using Current Mode Controlled PWM Converter (전류제어형 PWM컨버터를 이용한 동기발전기용 여자시스템에 관한 연구)

  • 장수진;류동균;서민성;김준호;원충연;이진국
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.32-39
    • /
    • 2003
  • The output voltage of synchronous generator is regulated constantly by field current control in excitation system High frequency PWM converter (current control mode buck converter) type excitation systam fer synchronous generator is able to control exciter current when the load change happened. This paper deals with the design and evaluation of the excitation system for a synchronous generator to improve the steady state and transient stability. The simulation and experimental results show that the proposed excitation system is able to improve the response time by the DVR(digital voltage regulator) of 50[kW] synchronous generator.

A High-Efficiency, Auto Mode-Hop, Variable-Voltage, Ripple Control Buck Converter

  • Rokhsat-Yazdi, Ehsan;Afzali-Kusha, Ali;Pedram, Massoud
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.115-124
    • /
    • 2010
  • In this paper, a simple yet efficient auto mode-hop ripple control structure for buck converters with light load operation enhancement is proposed. The converter, which operates under a wide range of input and output voltages, makes use of a state-dependent hysteretic comparator. Depending on the output current, the converter automatically changes the operating mode. This improves the efficiency and reduces the output voltage ripple for a wide range of output currents for given input and output voltages. The sensitivity of the output voltage to the circuit elements is less than 14%, which is seven times lower than that for conventional converters. To assess the efficiency of the proposed converter, it is designed and implemented with commercially available components. The converter provides an output voltage in the range of 0.9V to 31V for load currents of up to 3A when the input voltage is in the range of 5V to 32V. Analytical design expressions which model the operation of the converter are also presented. This circuit can be implemented easily in a single chip with an external inductor and capacitor for both fixed and variable output voltage applications.

Control of MPPT and DC-DC converter for a stand alone solar power system using a single digital controller (단일 디지털 제어기를 이용한 독립형 태양광 발전 시스템의 MPPT 및 DC-DC컨버터 제어)

  • Jin, Ho-Sang;Kim, Hee-Jun;Ahmad, Jawad
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.115-117
    • /
    • 2009
  • 본 논문은 단일 디지털 제어기를 이용하여 독립형 태양광 발진 시스템에 사용되는 태양전지에서 발생한 전력을 수집하고 필요에 따라 에너지 저장 장치에 전력을 저장하는 Boost 컨버터가 최대전력점에서 동작하도록 제어하면서, 이 전압을 부하에 필요한 전압 값으로 변환하는 Buck 컨버터를 동시에 제어하는 방법을 제안한다. 제안된 독립형 태양광 발전 시스템의 구성은 에너지를 발생하는 태양전지, 최대전력 점을 추종(MPPT)하도록 하는 Boost 컨버터, 부하에 적합한 준위의 전압을 공급하는 Buck 컨버터가 직렬로 연결되어 있다. 제안된 방법은 디지털 제어기의 제어변수 값들을 바꿈으로써 전체시스템의 출력특성을 쉽게 제어할 수 있어, 사용되는 태양전지 어레이의 종류와 환경조건 변화에 따라 쉽게 제어변수 값들을 조정할 수 있다. 또한 하나의 디지털 제어기로 최대전력점 제어부 및 Buck과 Boost 컨버터의 피드백 제어부를 구성하여 시스템의 구조가 간단해지기 때문에 소형 및 경량화를 이룰 수 있다.

  • PDF