• Title/Summary/Keyword: Buccal bone

Search Result 320, Processing Time 0.025 seconds

The application of "bone window technique" using piezoelectric saws and a CAD/CAM-guided surgical stent in endodontic microsurgery on a mandibular molar case

  • Kim, Ukseong;Kim, Sunil;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.3
    • /
    • pp.27.1-27.9
    • /
    • 2020
  • Apical surgery for a mandibular molar is still challenging for many reasons. This report describes the applications of computer-guided cortical 'bone-window technique' using piezoelectric saws that prevented any nerve damage in performing endodontic microsurgery of a mandibular molar. A 49-year-old woman presented with gumboil on tooth #36 (previously endodontically treated tooth) and was diagnosed with chronic apical abscess. Periapical lesions were confirmed using cone-beam computed tomography (CBCT). Endodontic microsurgery for the mesial and distal roots of tooth #36 was planned. Following the transfer of data of the CBCT images and the scanned cast to an implant surgical planning program, data from both devices were merged. A surgical stent was designed, on the superimposed three-dimensional model, to guide the preparation of a cortical window on the buccal side of tooth #36. Endodontic microsurgery was performed with a printed surgical template. Minimal osteotomy was required and preservation of the buccal cortical plate rendered this endodontic surgery less traumatic. No postoperative complications such as mental nerve damage were reported. Window technique guided by a computer-aided design/computer-aided manufacture based surgical template can be considerably useful in endodontic microsurgery in complicated cases.

A Case Report of Nail Bed Reconstruction with Digital Artery Perforator (DAP) Flap and Buccal Mucosal Graft (수지동맥천공지피판술과 볼점막 이식을 통한 조갑상 손상 치험 1례)

  • Lee, Yong-Woo;Kim, Youn-Hwan;Kim, Jeong-Tae
    • Archives of Plastic Surgery
    • /
    • v.38 no.1
    • /
    • pp.113-116
    • /
    • 2011
  • Purpose: Many fingertip injuries are associated with nail injury and it is hard to repair to original shape due to its unique characteristic. Mucosal graft is used for a defect of the nail bed injury. Hereby, we introduce a DAP flap and buccal mucosal graft, with which we could reduce the defect size of the injured fingertip and donor site morbidity at the same time, without any need for harvesting additional skin from other part of hand. Also, mucosal graft makes good cosmetic and functional outcome of nail. Methods: This method was performed in a 56-year-old man with fingertip injury on dorsal side of left thumb due to electrical saw. First, DAP flap was performed on the injured finger to reduce the size of the defect of fingertip and cover the bone exposure. Second, nail bed part of the DAP flap was de-epithelized and buccal mucosal graft was done from left side of intraoral cavity wall. Results: Flap and graft survived without any necrosis but some nail bed could not be covered with flap due to insufficient flap size. All wounds healed well and did not present any severe adversary symptoms. Conclusion: DAP flap with mucosal graft is an effective method that we can easily apply in reconstruction of fingertip injury. We suggest that the combination of the two procedures makes good functional and cosmetic outcome compared to the usual manner, especially in cases of nail bed injury without distal phalanx bone defect.

The Remodeling of the Posterior Edentulous Mandible as Illustrated by Computed Tomography (전산화 단층사진술에 의해 예증된 구치부 무치악 하악골의 골개조)

  • Park Chang-Seo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.43-53
    • /
    • 1999
  • Purpose: The aim of this study was to analyze radiologically the location and course of the mandibular canal and to observe the alveolar and basal bone changes during the remodeling procedures of atrophic mandible. Materials and Methods: CT scanning was performed on dry 30 edentulous or partially dentulous mandibles. In 48 edentulous lower halves, measuring areas were determined by three points in the length of the mandibular canal. The distance from the mandibular canal towards cranial and caudal edges, buccal and lingual external borders of the body of the mandible were measured. A statistical comparison between the mean values of different classes of mandibular body was carried out in the selected areas. Results: The distance between the mandibular canal and caudal borders of the body of the mandible and lingual borders dose not change in the atrophic process of mandible. The mandibular canal within the mandible courses downwards from mandibular foramen towards mesial and subsequently it gets to the mental foramen. The distance between the mandibular canal and buccal external border of basal bone changes similar to the change of cranial borders of alveolar bone in the atrophic process of mandible. Conclusion: CT scanning was very effective and practicable to analyze the location and course of the mandibular canal and to observe the alveolar and basal bone changes of atrophic mandible. Also more detailed investigation of basal bone changes observed during the remodeling procedures of atrophic mandibles seems reasonable to rely on the massive anthropologic collections of atrophic mandibles combined with CT scanning.

  • PDF

AN ANALYSIS OF STRESS DISTRIBUTION AROUND THE IMPLANT ACCORDING TO THE BONE QUALITY AND BITE FORCE: FINITE ELEMENT METHOD (저작압이 임프란트 주위골 내 응력분포에 미치는 영향에 관한 연구)

  • Hyun Ki-Bong;Lee Sun-Hyung;Chang Ik-Tae;Yang Jae-Ho;Shin Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.4
    • /
    • pp.391-409
    • /
    • 2001
  • Since the early study about the osseointegration, lots of researches have been performed to increase the success rate and the stress around the implant in the jaw bone has been considered as one of the causes of failure. The purpose of this study was to examine the relationship between the implant failure and the stress by analysing the influence of different bone quality and bite force of some foods on the stress distribution around the implant, and to estimate the treatment result according to the bone quality and dietary pattern of patients. Bone quality was divided in 4 groups and models were drawn with the assumption that thread type implant(Nobel Biocare AB, Goteborg, Sweden) of 3.75mm diameter, 13mm length was installed to the bones. Various bite forces were applied to the occlusal surface of superstructure and the stress distributed around the implant were analysed with finite element analysis program. The results were as follows ; 1. The stress was changed proportionally to the bite forces of foods at all measuring points in all load cases. 2. The stress at the marginal bone was higher than that of the other measuring points in all load cases, and it was decreased at the first thread area. 3. The stress at the marginal bone was highest in type IV bone in all load cases. Especially it was twice those of other bone types at the bucco-lingual marginal bone and 50% higher at the mesio-distal marginal bone. 4. The stress at the bucco-lingual sides of the bone around the apical portions of implant showed little differences among the bone types, while type IV bone showed lower stress concentration than the other bone types in the mesio-distal sides. 5. Under the buccal oblique load ($15^{\circ}$ ), the stress at the lingual marginal bone was higher than that of buccal marginal bone, and the difference between the two points was almost same regardless of bone types.

  • PDF

THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO THE DIFFERENT FIXTURE LOCATIONS AND ANGULATIONS (임플랜트 지지 보철물에서 고정체의 식립위치와 각도에 따른 삼차원 유한요소법적 응력분석에 관한 연구)

  • Park Won-Hee;Lee Young-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.1
    • /
    • pp.61-77
    • /
    • 2005
  • Statement of problem. The implant prosthesis has been utilized in various clinical cases thanks to its increase in scientific effective application. The relevant implant therapy should have the high success rate in osseointegration, and the implant prosthesis should last for a long period of time without failure. Resorption of the peri-implant alveolar bone is the most frequent and serious problem in implant prosthesis. Excessive concentration of stress from the occlusal force and biopressure around the implant has been known to be the main cause of the bone destruction. Therefore, to decide the location and angulation of the implant is one of the major considering factors for the stress around the implant fixture to be dispersed in the limit of bio-capacity of load support for the successful and long-lasting clinical result. Yet, the detailed mechanism of this phenomenon is not well understood. To some extent, this is related to the paucity of basic science research. Purpose. The purpose of this study is to perform the stress analysis of the implant prosthesis in the partially edentulous mandible according to the different nature locations and angulations using three dimensional finite element method. Material and methods, Three 3.75mm standard implants were placed in the area of first and second bicuspids, and first molar in the mandible Thereafter, implant prostheses were fabricated using UCLA abutments. Five experimental groups were designed as follows : 1) straight placement of three implants, 2) 5$^{\circ}$ buccal and lingual angulation of straightly aligned three implants, 3) 10$^{\circ}$ buccal and lingual angulation of straightly aligned three implants. 4) lingual offset placement of three implants, and 5) buccal offset placement of three implants. Average occlusal force with a variation of perpendicular and 30$^{\circ}$ angulation was applied on the buccal cusp of each implant prosthesis, followed by the measurement of alteration and amount of stress on each configurational implant part and peri-implant bio-structures. The results of this study are extracted from the comparison between the distribution of Von mises stress and the maximum Von mises stress using three dimensional finite element stress analysis for each experimental group. Conclusion. The conclusions were as follows : 1. Providing angulations of the fixture did not help in stress dispersion in the restoration of partially edentulous mandible. 2. It is beneficial to place the fixture in a straight vertical direction, since bio-pressure in the peri-implant bone increases when the fixture is implanted in an angle. 3. It is important to select an appropriate prosthodontic material that prevents fractures, since the bio-pressure is concentrated on the prosthodontic structures when the fixture is implanted in an angle. 4. Offset placement of the fixtures is effective in stress dispersion in the restoration of partially edentulous mandible.

The use of the buccal fat pad flap for oral reconstruction

  • Kim, Min-Keun;Han, Wonil;Kim, Seong-Gon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.5.1-5.9
    • /
    • 2017
  • Many congenital and acquired defects occur in the maxillofacial area. The buccal fat pad flap (BFP) is a simple and reliable flap for the treatment of many of these defects because of its rich blood supply and location, which is close to the location of various intraoral defects. In this article, we have reviewed BFP and the associated anatomical background, surgical techniques, and clinical applications. The surgical procedure is simple and has shown a high success rate in various clinical applications (approximately 90%), including the closure of oroantral fistula, correction of congenital defect, treatment of jaw bone necrosis, and reconstruction of tumor defects. The control of etiologic factors, size of defect, anatomical location of defect, and general condition of patient could influence the prognosis after grafting. In conclusion, BFP is a reliable flap that can be applied to various clinical situations.

BUCCAL FAT PAD TRANSFER AS A PEDICLED FLAP FOR FACIAL AUGMENTATION (외상성 안면 함몰부에 협지방대 유경 피판을 사용한 재건술)

  • Chung, Sang-Chul;Ann, Heui-Yong;Choi, Hong-Sik;Um, In-Woong;Kim, Chang-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.13 no.2
    • /
    • pp.153-159
    • /
    • 1991
  • The use of the autogenous free fat is a well-known procedure to fill in superficial depressions resulting from the traumatic or congenital defects. The major donor site for this procedure was the abdominal subcutaneous fat or buttocks. In 1977, Egyedi was the first to report the use of the buccal fat pad as a pedicled graft. The buccal fat pad is a structure usually considered to be a nuisance when encountered in intraoral procedures such as facial bone osteotomies, elevation of buccal falp, or procedures on Stensen's duct. In these operations, appearance of the buccal fat pad complicates surgical exposure. The buccal fat pad is a lobulated convex mass of fatty tissue covered by a very delicate membrane, and is described as having a body from which four processes extend. These projection serve as a filling material between the various muscular structures in the area. Recently malar depression was augmented with the pedicled buccal fat pad in 3 cases, and it was used for the reconstruction of the nasolabial fold in one case.

  • PDF

Clinical application of bone graft materials in dental implant (임상가를 위한 특집 3 - 기능별 뼈이식재의 임프란트 적용방법)

  • Ahn, Kang-Min
    • The Journal of the Korean dental association
    • /
    • v.48 no.4
    • /
    • pp.275-279
    • /
    • 2010
  • Dental implant restoration in partial or full edentulous state has become the standard treatment in recent years. Bone graft with guided bone regeneration technique has been regarded as one of the most reliable methods to restore the bone defect area due to periodontal disease or dental trauma. Bone graft materials and membrane are the essential component of guided bone regeneration; however, a variety of bone graft materials confuse us in implant dentistry. Autogenous bone is the recognized standards in implant dentistry owing to its osteogenesis potential. Despite of its disadvantages, grafting autogenous bone is the most reliable methods. Even though the development of new bone grafts materials, autogenous bone is useful in exposed implant thread and total lack of buccal or lingual bone. Allogenic, xenogenic and synthetic bone have the osteoconductive and osteoinductive potential. These materials could be used successfully in self-contained cavity such as sinus cavity and three-wall defects. In this article, application of bone graft material is suggested according to the function of bone graft materials.

Evaluation of the course of the inferior alveolar canal in the mandibular ramus using cone beam computed tomography

  • Kwon, Kyung-Hwan;Sim, Kyu-Bong;Lee, Jae-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.4
    • /
    • pp.231-239
    • /
    • 2012
  • Objectives: This study sought to provide guidelines in order to decrease the incidence of nerve injury during mandibular ramus bone harvesting, and to improve understanding of the anatomical structure of the inferior alveolar canal (IAC) to include its distance from the exterior buccal cortex. Materials and Methods: In January and February 2009, 20 patients who visited the Wonkwang University Department of Oral and Maxillofacial Surgery reporting various conditions underwent cone beam computed tomography and were included in this study. Patients with missing left or right mandibular first molars or incisors, or who had jaw fracture or bone pathologies, were excluded. The reference point (R point) was defined as the point where the occlusal plane reached the anterior ramus of the mandible. The position of the IAC in relation to the R point, the buccal bone width (BW), the alveolar crest distance (ACD), the distance from the alveolar crest to the occlusal plane (COD), and the distance from the IAC to the sagittal plane (CS) were determined using proprietary image analysis software which produced cross-sectional coronal and axial images. Results: The distance medially from the R point to the IAC along the axial plane was $6.19{\pm}1.21mm$. The HD from the R point, posteriorly to IAC, in the lateral view was $13.07{\pm}2.45mm$, the VD from the R point was $14.24{\pm}2.41mm$, and the ND from the R point was $10.12{\pm}1.76mm$. The pathway of the IAC was positioned almost in a straight line along a sagittal plane within $0.56{\pm}0.70mm$. The distance from the buccal bone surface to the IAC increased anteriorly from the R point. Conclusion: Marking osteotomy lines in the retromolar area in procedures involving bone harvesting should be discouraged due to the risk of damage to IAC structures. Our measurements indicated that the area from the R point in the ramus of the mandible to 10 mm anterior can be safely harvested for bone grafting purposes.

ANALYSIS OF STRESS DEVELOPED WITHIN THE SUPPORTING TISSUE OF ABUTMENT TOOTH WITH INDIRECT RETAINER ACCORDING TO VARIOUS DESIGNS OF DIRECT RETAINER AND DECREE OF BONE RESORPTION (편측성 후방연장 국소의치에서 직접유지장치의 설계와 지대치 골흡수에 따른 간접유지장치 지대치 주위조직에 발생하는 응력분석)

  • Lee, Suk-Hyun;Lee, Cheong-Hee;Jo, Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.1
    • /
    • pp.150-165
    • /
    • 1998
  • For the purpose of evaluating the effect of both direct retainer design and bony absorption degree around abutment of indirect retainer on the supporting tissue of abutment of indirect retainer, dislodging force was transmitted to unilateral distal extension RPD bases. Analysis of stress distributed within the supporting tissue around abutment of indirect retainer was carried out. Using three-dimensional photoelastic stress analysis method and the conclusion is a follows. 1. According to the extent of force which the direct retainer of the most distal abutment tooth, the amount of force transmitted to the abutment tooth of indirect retainer was small. 2. Of all the cases, Mandibular first premolar which was used abutment tooth of indirect retainer, buccal, mesial and distal sides represented compression stress and lingual side represented tensile stress. 3. The more bone resorption of abutment tooth of indirect retainer, the more distortion of buccal and distal side of abutment tooth was existed and the extent of compression stress which was existed and distal side to abutment tooth was large. 4. When the alveolar bone around the abutment with indircet retainer is normal. The amount of force transmitted on abutment with indirect retainer was small in the order of Akers clasp, RPA clasp, RPI clasp. 5. When the alveolar bone around the abutment with indirect retainer has been absorbed 20% and 30%, the amount of force transmitted on abutment with indirect retainer was small in the order of RPA calsp, RPI clasp, Akers clasp. 6. When denture is displaced, shape of the direct retainer reciprocating abutment affect much the function of indirect retainer.

  • PDF