• Title/Summary/Keyword: Bubble washing

Search Result 29, Processing Time 0.022 seconds

A Study on the Cleanup fur Diesel-Contaminated Soil by Micro-Bubble Enhanced Soil Washing Process (미세기포를 이용한 토양세척기법의 디젤 오염토양 정화에 관한 연구)

  • 조장환;장윤영;최상일
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 1999
  • The treatment of petroleum contaminated soil requires various physico-chemical remediation technologies which are efficient in time and can reduce the possibility of secondary contamination by themselves In this study, an innovated soil washing process was proposed to treat the diesel-contaminated soil. Micro-bubbles, which were generated by hydrogen peroxide, deserted and floated the contaminants. Soils less than #60(0.25mm) were artificially contaminated by 6,500mg TPH/kg dry soil initially. The process was examined for pH, the soil to water mixing ratio, concentration of $H_2O$$_2$, and contacting times. In the case of less than #60 soil, maximum removal efficiency(60%) was obtained at pH 12. 1.0% hydrogen peroxide, and 1 : 5 soil to water mixing ratio for 1 hour.

  • PDF

Microfabrication of the ISFET Cartridge by empolying Nozzle system (노즐의 원리를 도입한 ISFET 소형 카트리지 제작)

  • Kim, Hyun-Soo;Lee, Young-Chul;Kim, Young-Jin;Cho, Byung-Woog;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.320-326
    • /
    • 1999
  • A small cartridge, with a nozzle system for washing off the dirt from the surfaces of sensing gates, was fabricated. The proposed nozzle structure was designed for cartridge by using the simulation tool of fluid (CFD-ACE). Whole size of the fabricated cartridge by using micromachining techniques is about $2.6\;cm{\times}1.5\;cm$, the size of the washing nozzle is $0.2\;mm{\times}0.6\;mm$ and its dead volume is only about $20\;{\mu}l$. A micro-reference electrode was achieved by employing a differential system with ISFETs/QRE (quasi-reference electrode)/REFET (reference field-effect transistor). Metal electrodes was deposited at both ends of blowing channel were used to check the presence of bubble in the microchannel. The pH-ISFET was inserted into the fabricated cartridge and the washing effect of the nozzle system in cartridge was invested.

  • PDF

Storage Attribute of Angelica keiskei Juice Treated with Various Electrolyzed Water (전기분해수 세척방법을 이용한 신선초 녹즙의 저장 특성)

  • Park, Yeo-Jin;Yoo, Jae-Yeol;Jang, Keum-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.12
    • /
    • pp.1846-1853
    • /
    • 2010
  • The storage attributes of green juice prepared by washing Angelica keiskei with various washing solutions using air bubble method were investigated. The washing solutions were distilled water (DW), sodium hypochlorite electrolyzed water (SHEW), and slightly acidic electrolyzed water (SAEW). During storage at $4^{\circ}C$, the number of bacteria after 1 day was $>10^5$ CFU/mL when DW was used, whereas bacterial growth was $<10^5$ CFU/mL after 4 days when SHEW or SAEW was used. The pH and color were not changed, and the polyphenol content, electron donating ability and total antioxidant ability were decreased slowly with the increase of storage time. No significant difference in any of the measured properties was found among washing methods (p<0.05). Consequently, these results suggest the possible use of electrolyzed water for washing to enhance the shelf life of green juice with A. keiskei because SHEW and SAEW decreased bacterial growth without affecting other properties of the green juice.

Development of Control System for Disinfection Unit of Moving Welfare Device (이동식 복지용구 소독장치를 위한 제어시스템 개발)

  • Seong, Chung-Ill;Cho, Seong-Beom;Hwang, Gi-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.304-306
    • /
    • 2012
  • In this Paper, we develop control system for disinfection of welfare Equipment. In this paper, the developed system including disinfection control circuit using Hydrogen peroxide steam, chamber control circuit for disinfection using low vacuum and washing system control circuit using micro bubble.

  • PDF

Characterization of Nickel-coated Silver Nanowire Flexible Transparent Electrodes with a Random-mesh Structure Formed by Bubble Control (거품 제어에 의해 형성된 무정형 그물망 구조의 니켈이 코팅된 은나노와이어 유연 투명전극의 특성 분석)

  • Park, Jong Seol;Park, Tae Gon;Park, Jin Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.36-42
    • /
    • 2020
  • Silver nanowire (AgNW) random-meshes with high transmittance, low sheet resistance, and high oxidation stability and flexibility were fabricated using solution-based processes. The random-mesh structure was obtained by forming bubbles whose sizes and densities were controlled using a corona treatment of polyethylene terephthalate (PET) substrates. To reduce the sheet resistance of the fabricated AgNW electrode, a washing process using ethanol solution was performed. In addition, nickel (Ni) was coated on AgNW to improve resistance to oxidation. The effects of corona treatment and Ni-coating on the transmittance, sheet resistance, oxidation stability, and flexibility of the AgNW electrodes were investigated.

A Study on the Cleanup of Diesel-Contaminated Soil by Micro-Bubble Soil Washing Process (미세기포를 이용한 토양세척기법의 디젤 오염토양 정화에 관한 연구)

  • 조장환;정민정;민경석;최상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.04a
    • /
    • pp.97-99
    • /
    • 1999
  • 본 연구에서는 디젤로 오염된 토양을 효율적으로 정화하기 위해, 알칼리제와 과산화수소를 이용하는 새로운 방식의 토양세척기법에 대하여 일련의 회분식 실험을 통하여 최적의 운전조건을 검토하고자 하였다. 알칼리제인 NaOH를 이용하여 세척수의 pH를 상승시켜, 강알칼리 상태에서 과산화수소를 주입하면 미세기포가 발생되며, 이 미세기포에 의해 토양에 흡착되어 있는 유류 오염물질이 효과적으로 탈착.부상된다. #60(0.25mm) 이하의 자연토양을 6,500 mg TPH/kg dry soil로 오염시켜 사용하였으며, 세척수의 pH, 진탕비(토양 중량 : 세척용액 부피), 과산화수소 주입량, 세척시간에 의한 영향을 살펴보았다. 세척수의 pH는 12, 진탕비는 1:5, 과산화수소 주입량은 1%, 세척시간은 1시간으로 적용한 결과 최대효율(60%)을 얻을 수 있었다.

  • PDF

A Study on Soil Washing for Diesel-contaminated Soil by using Decomposition of NaOH/H$_2$O$_2$ (디젤유로 오염된 토양의 NaOH/H$_2$O$_2$ 분해를 이용한 토양세척에 관한 연구)

  • Hwang, Jong-Hyun;Choi, Won-Joon;Kim, Min-Chul;Jung, Jong-Hyeon;Ha, Soo-Ho;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.999-1005
    • /
    • 2008
  • The main reaction for soil washing with using sodium hydroxide(NaOH) and hydrogen peroxide(H$_2$O$_2$) was desorption and flotation of petrochemical contaminant by means of oxygen bubble. We found the rate of decomposition by rate constant according to various temperature. For the purpose of optimizing the operation factor, we examined the effect of concentration of NaOH and H$_2$O$_2$, washing time, and soil:water ratio. The rate of decomposition for H$_2$O$_2$ in liquid phase is the first order reaction by its concentration. The rate constant of k$_1$ was 0.9439 $\times$ exp(-1376.82/RT) when concentration of NaOH was lower than 0.1 M, and the rate constant of k$_2$ was 17.3588 $\times$ exp(-2320.06/RT) when it was higher than NaOH of 0.1 M. It found that NaOH was facilitated at the beyond of specific concentration. We confirmed the optimum concentration of NaOH/H$_2$O$_2$ by means of rate constants during soil washing. Also, the optimum conditions during soil washing were washing time of 15 min, soil : water ratio of 1 : 3, and NaOH/H$_2$O$_2$ concentration of 0.25 M/0.1 M.

Effects of Physical and Chemical Treatment as the Pretreatments on Microorganisms and Quality Characteristics of Allium monanthum (전처리 방법이 달래의 품질 특성과 미생물 저감에 미치는 영향)

  • Shim, Hyun-Jeong;Seong, Ok-Lan;Cho, Yong-Sik;Jang, Hyun-Wook;Hwang, Young
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.6
    • /
    • pp.510-519
    • /
    • 2021
  • The purpose of this study was to investigate the effect of the microbial reduction and quality maintenance of the physical and chemical pretreatment of Allium monanthum. For physical treatment, handwash, bubble wash and ultrasonication were conducted at 50℃ and 60℃ for 1, 3 and 5 minutes, respectively, and for chemical treatment the sample was immersed in fumaric acid and acetic acid of 1.5% and 2% concentrations for 1, 3 and 5 minutes, respectively. As a result of the microorganism and quality analysis, 3 minutes of bubble wash was the most effective physical pretreatment in reducing fungi although the effect on reducing total viable bacterial was small. Furthermore, 5 minutes of ultrasonication at 60℃ significantly reduced microorganisms, but also resulted in the reduction of the a value of chromaticity, which cause the green color to fade. With chemical pretreatment, it was found that treating with fumaric acid was more effective in reducing the total viable bacteria and fungi than acetic acid. The result shows that 1.5% concentration of fumaric acid is the most effective with 3 minutes of treatment time. The quality of Allium monanthum were compared in the combination of the two most effective microorganism reduction pretreatments: 3 minutes of bubble wash (B3) and 3 minutes in 1.5% fumaric acid (F153). As a result of analyzing the quality characteristics over 9 days of storage at 4℃ after the treatments, it was revealed that the BF treatment is more effective in reducing fungi than the total viable bacteria. The results shows that the BF treatment is more effective in reducing total viable bacteria, whereas the F153 treatment is more effective in reducing fungi. Also, it was found that the 𝚫E value in BF was the lowest, whereas F153 treatment showed the green color faded. The maximum cohesiveness changed more significantly in the green stems than in the roots. On the 9th day of storage, the hardness of the green stem was found to be maintained at the highest level (P<0.05) after F153 treatment, whereas that of the roots decreased (P<0.05) since the 6th day after the bubble wash. Considering the reduction of microorganisms and the quality maintenance of Allium monanthum, the most effective pretreatment methods were 3 minutes in 1.5% fumaric acid for reducing microorganisms and maintaining color and maximum cohesiveness, and the combined process could also be effective if the expiration period is within 3 days.

Comparison of In Vitro, Ex Vivo, and In Vivo Antibacterial Activity Test Methods for Hand Hygiene Products (손 위생 제품에 대한 in vitro, ex vivo, in vivo 항균 시험법 비교)

  • Daeun Lee;Hyeonju Yeo;Haeyoon Jeong
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.1
    • /
    • pp.35-43
    • /
    • 2024
  • Numerous methods have been applied to assess the antibacterial effectiveness of hand hygiene products. However, the different results obtained through various evaluation methods have complicated our understanding of the real efficacy of the products. Few studies have compared test methods for assessing the efficacy of hand hygiene products. In particular, reports on ex vivo pig skin testing are limited. This study aimed to compare and characterize the methodologies applied for evaluating hand hygiene products, involving in vitro, ex vivo, and in vivo approaches, applicable to both leave-on sanitizers and wash-off products. Our further aim was to enhance the reliability of ex vivo test protocols by identifying influential factors. We performed an in vitro method (EN1276) and an in vivo test (EN1499 and ASTM2755) with at least 20 participants, against Serratia marcescens or Escherichia coli and Staphylococcus aureus. For the ex vivo experiment, we used pig skin squares prepared in the same way as those used in the in vivo test method and determined the optimal treated sample volumes for sanitizers and the amount of water required to wash off the product. The hand sanitizers showed at least a 5-log reduction in bacterial load in the in vitro test, while they showed little antibacterial activity in the in vivo and ex vivo tests, particularly those with a low alcohol content. For the hand wash products, the in vitro test was limited because of bubble formation or the high viscosity of the products and it showed low antibacterial activity of less than a 1-log reduction against E. coli. In contrast, significantly higher log reductions were observed in ex vivo and in vivo tests, consistently demonstrating these results across the two methods. Our findings revealed that the ex vivo and in vivo tests reflect the two different antibacterial mechanisms of leave-on and wash-off products. Our proposed optimized ex vivo test was more rapid and more precise than the in vitro test to evaluate antibacterial results.