• Title/Summary/Keyword: Bubble volume

Search Result 180, Processing Time 0.025 seconds

Activation of Fibrinolytic System during Open Heart Surgery (개심술중 섬유소융해계의 활성화에 관한 연구)

  • Park, Lee-Tae;Seo, Gyeong-Pil;Lee, Jeong-Sang
    • Journal of Chest Surgery
    • /
    • v.22 no.4
    • /
    • pp.525-547
    • /
    • 1989
  • Hemorrhagic tendency observed in open heart surgery patients has been attributed, among other causes, to increased fibrinolytic activity during extracorporeal circulation. But the exact mechanism of enhanced fibrinolytic activity which occurs during extracorporeal circulation is still unknown. So, we studied and compared the changes of parameters of fibrinolytic and protein C system according to time obtained from the plasma of 31 adult open heart surgery patients[EGG group] and 10 adult general thoracic surgery patients[control group], in order to confirm the hypothesis that the activated protein C system might affect the fibrinolytic system during extracorporeal circulation. In ECC group, the nature of the enhanced fibrinolytic activity that evolved during extracorporeal circulation was characterized by significant increase in fibrin degradation products[P < 0.01] and significant decrease in plasminogen and alpha2-antiplasmin[P < 0.05, P < 0.01] in spite of adequate amount of heparin administration. These changes were most pronounced in the early phase of extracorporeal circulation and normalized after termination of extracorporeal circulation. The results of these observations were the same after volume correction with the value of hematocrit. The change of volume corrected protein C ratio during extracorporeal circulation revealed similar pattern to those of plasminogen and alpha2-antiplasmin [P < 0.01], but volume corrected ratio of free protein S showed significant increase after the commencement of extracorporeal circulation then decreased after extracorporeal circulation. Although the above mentioned changes occur similarly in both bubble type oxygenator-used and membrane oxygenator-used patients groups, but the degree of decrease was more severe in membrane oxygenator-used patients group [P < 0.01] and showed much slower recovery to reach to the preextracorporeal circulation level. These results confirm the hypothesis that the enhanced fibrinolysis during extracorporeal circulation might be caused by the activation of protein C system and the activation is possibly linked to the appearance of thrombin from contact activation of blood after wide exposure to the synthetic surfaces of extracorporeal circuit. Key words: Extracorporeal circulation, Enhanced fibrinolysis, Protein C system.

  • PDF

Morphological Change of Precipitated Calcium Carbonate by Reaction Rate in Bubble Column Reactor (기포탑 반응기에서 반응 속도에 따른 침강성 탄산칼슘의 모폴로지 변화)

  • Hwang, Jung Woo;Lee, Yoong;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.727-733
    • /
    • 2009
  • Effects of $Ca(OH)_2$ concentration(0.16~0.64 wt%), total volumetric flow rate(3~6 L/min) and $CO_2$ volume fraction(0.3~0.6) on morphology of the precipitated $CaCO_3$ and the mean particle size of the precipitated $CaCO_3$ were investigated in the slurry bubble column reactor. Experiments were carried out in acrylic reactor($0.11m-ID{\times}1.0m-high$) with a internal tube($0.04m-ID{\times}1.0m-high$). The calibration curve on the mass ratio of $CaCO_3$ to $Ca(OH)_2$ was obtained by FT-IR for the conversion of $Ca(OH)_2$ with the reaction time. The reaction rate of $Ca(OH)_2$ increased with increasing the volumetric flow rate of $CO_2$. From SEM images, the crystal size of $CaCO_3$ increased with increasing the reaction rate in the saturated concentration of $Ca(OH)_2$ (0.16 wt%). In addition, the crystal size of precipitated $CaCO_3$ decreased with increasing the concentration of $Ca(OH)_2$, but the mean particle size of precipitated $CaCO_3$ increased with increasing the concentration of $Ca(OH)_2$.

Anaerobic Digestion Fish Offal(I): Effect of Reactor Configuration and Sludge Bed Fluidization on Start-up of Digester (어류 폐기물의 혐기성소화 처리(I): 반응조 형상 및 슬러지층 유동화가 소화조 Start-up에 미치는 영향)

  • Jeong Byung-Gon;Kim Byung-Hyo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.2
    • /
    • pp.72-78
    • /
    • 2006
  • Effect of organic loading rate on digester performance was evaluated under the conditions of same surface area/reactor volume ratio and different reactor diameter. At the low loading rate of $0.4\;kg\;COD/m^3{\cdot}d$, high rate of organic removal could be obtained regardless of reactor diameter. It can be estimated that reactor configuration can not affect reactor performance at the low loading rate. However, different performance depending on reactor diameter was observed at the organic loading rate of $6\;kg\;COD/m^3{\cdot}d$. That is, volatile acid accumulation and low COD removal efficiency was observed in reactor having 6.4 cm diameter, while volatile acid was not accumulated at all and high COD removal efficiency was observed in reactor having 3 cm diameter. Such a difference of reactor performance depending on reactor diameter can be explained that sludge bed can be fluidized by evolved gas bubble in narrow reactor while sludge bed can not be fluidized by evolved gas bubble only in wide reactor. At a high organic loading rate of $20\;kg\;COD/m^3{\cdot}d$, it can be judged that there is no relation between reactor configuration and reactor performance because all reactors showed very low COD removal efficiencies regardless of reactor diameter. Sludge bed fluidization is one of the most important factors in achieving efficient start-up of anaerobic digester. Narrow and tall type reactor is favorable condition for making sludge bed fluidization at a constant surface area/reactor volume ratio. Thus, it can be judged that reactor configuration and sludge bed fluidization have great influence to reactor performance.

  • PDF

Solubility of carbon dioxide in ionic liquids with methylsulfate anion (Methylsulfate 음이온을 갖는 이온성 액체에 대한 이산화탄소의 용해도)

  • Jung, Jun-Young;Lee, Byung-Chul
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.467-476
    • /
    • 2011
  • Solubility data of carbon dioxide ($CO_2$) in the imidazolium-based ionic liquids with methylsulfate anion are presented at pressures up to about 45 MPa and at temperatures between 303.15 K and 343.15 K. The ionic liquids studied in this work were 1-ethyl-3-methylimidazolium methylsulfate ([emim][$mSO_4$]), 1-butyl-3-methylimidazolium methylsulfate ([bmim][$mSO_4$]). The solubilities of $CO_2$ were determined by measuring the bubble point or cloud point pressures of the binary mixtures using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. The equilibrium pressure increased very steeply at high $CO_2$ compositions. The $CO_2$ solubility in ionic liquids increased with increase of the total length of alkyl chains attached to the imidazolium cation of the ionic liquids. The phase equilibrium data for the $CO_2$ + ionic liquid systems have been correlated using the Peng-Robinson equation of state.

Boiling Heat Transfer Coefficients of Nanofluids Using Carbon Nanotubes (탄소나노튜브를 적용한 나노유체의 비등 열전달계수)

  • Lee, Yo-Han;Jung, Dong-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.35-44
    • /
    • 2009
  • In this study, boiling heat transfer coefficients(HTCs) and critical heat flux(CHF) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nano tubes(CNTs) dispersed at $60^{\circ}C$. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001, 0.001, 0.01, and 0.05%. For dispersion of CNTs, polyvinyl pyrrolidone(PVP) is used in distilled water. Pool boiling HTCs are taken from $10kW/m^2$ to critical heat flux for all nanofluids. Test results show that the pool boiling HTCs of the nanofluids are lower than those of pure water in entire nucleate boiling regime. On the other hand, critical heat flux is enhanced greatly showing up to 200% increase at volume concentration of 0.001% CNTs as compared to that of pure water. This is related to the change of surface characteristics by the deposition of CNTs. This deposition makes a thin CNT layer on the surface and the active nucleation sites of heat transfer surface are decreased due to this layer. The thin layer acts as the thermal resistance and also decreases the bubble generation rate resulting in a decrease in pool boiling HTCs. The same layer, however, maintains the nucleate boiling even at very high heat fluxes and reduces the formation of large vapor canopy at near CHF resulting in a significant increase in CHF.

STUDY ON GREEN WATER BEHAVIOR ON RECTANGULAR SHAPED STRUCTURE (사각형 단면 구조물에 대한 그린워터의 생성 특성 연구)

  • Lee, K.N.;Jung, K.H.;Chae, Y.J.;Park, I.R.;Suh, S.B.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.96-102
    • /
    • 2015
  • In this study, the green water phenomena on rectangular shaped structure is numerically simulated by STAR-CCM+ to investigate the flow pattern including the velocity profiles in bubbly water flow. 5 phases of the formation of green water in front of and over the rectangular shaped structure is simulated at the design condition which is scaled down by 1:125 from FPSO operating in GOM. All numerical results are compared with the experimental results performed in a two dimensional wave flume. The water deformation due to the green water are obtained by the high speed CCD camera with employing the shadow graphy technique, which is allowed to take the bubbly water flow into images. A series of image taken by shadow graphy technique is analyzed with MQD method to calculate the velocity in bubbly water flow.

Motor Weakness after Caudal Epidural Injection Using the Air-acceptance Test

  • Lee, Mi Hyeon;Han, Cheol Sig;Lee, Sang Hoon;Lee, Jeong Hyun;Choi, Eun Mi;Choi, Young Ryong;Chung, Mi Hwa
    • The Korean Journal of Pain
    • /
    • v.26 no.3
    • /
    • pp.286-290
    • /
    • 2013
  • Air injected into the epidural space may spread along the nerves of the paravertebral space. Depending on the location of the air, neurologic complications such as multiradicular syndrome, lumbar root compression, and even paraplegia may occur. However, cases of motor weakness caused by air bubbles after caudal epidural injection are rare. A 44-year-old female patient received a caudal epidural injection after an air-acceptance test. Four hours later, she complained of motor weakness in the right lower extremity and numbness of the S1 dermatome. Magnetic resonance imaging showed no anomalies other than an air bubble measuring 13 mm in length and 0.337 ml in volume positioned near the right S1 root. Her symptoms completely regressed within 48 hours.

Thickening of Sludge from DAF process by Flotation; Application of Solid Flux Theory and Effective Factors (DAF 슬러지의 부상식 농축; 고형물 플럭스법 적용과 영향인자)

  • Park, Sangcheol;Han, Mooyoung;Dockko, Seok;Kwon, Soonbuhm
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.617-626
    • /
    • 2006
  • Compared with the sludge from gravity sedimentation, it is difficult for operations to settle the sludge occurred from dissolved-air-flotation (DAF). Even though there are some problems in treating DAF sludge with conventional gravity thickeners, those has been used until now. In this study, Solid Flux theory for gravity thickening was applied to the Solid Flux of DAF sludge through flotation in order to develop new methodology for treatment of DAF sludge. Also, characteristics of DAF sludge were investigated. From the experiment results, it was revealed that the higher the polymer dosage, at fixed the solid concentration, the greater the rising velocity becomes. When we applied solid flux theory, the relationship, which is similar to that of gravity thickening, has been achieved. Also, we could find the proper polymer dosage from the rising velocity is about 50 mg/L. Consequently, the limiting solid flux can be derived from the relationship between the total solid flux and the withdrawal velocity of DAF sludge. Furthermore, the factors, such as solid concentrations, bubble volume, pH, zeta potential, and temperature, have effects on the flotation and sedimentation for DAF sludge treatment.

Selection of Surfactant and Operation Scheme for Improved Efficiency of In-situ Soil Flushing Process (원위치 토양세척 공정의 효율향상을 위한 세제선정과 운전기법)

  • Son, Bong-Ho;Lim, Bong-Su;Oa, Seong-Wook;Lee, Byung-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.824-830
    • /
    • 2006
  • Several tests were conducted to optimize the design parameters of ln-situ soil flushing processes for diesel contaminated soil. According to the batch extraction test for three anionic surfactants evaluation, Calgonit limiting bubble occurrence was selected for its higher oil cleaning efficiency. After optimum surfactant selection, there were many sets of column flushing test. Over 70% of BTEX was removed in this surfactant dose with 400% of soil volume. In the case of no surfactant addition flushing in column, so called "blank flushing test", BTEX removal rate was 64%. But when we reused the effluent for the cleaning solution, the removal rate was decreased to 46.9%. This result showed reabsorption of oil occurred on the soil. With the addition of Calgonit solution to the diesel contaminated column, BTEX was removed up to 98.9% during the first flushing and 99.4% for the second recirculation flushing. In microcosm tests, diesel contaminated soils were cleaned by both surfactant flushing and biological activities. In anoxic condition, nitrate was used as an electron acceptor while the surfactant and the oil were used an electron donor. BTEX removal efficiency could be achieved up to 80% by biological degradation.

Preparation and Characteristics of a Matrix Retaining Electrolyte for a Phosphoric Acid Fuel Cell Using Non-volatile Solvent, NMP (비휘발성 용매(NMP)를 사용한 인산형 연료전지(PAFC)용 전해질 매트릭스 제조 및 특성)

  • 윤기현;양병덕
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Preparation and characteristics of a matrix retaining electrolyte using SiC whisker, PES binder, and NMP(n-methyl-2-pyrrolidone) as a non-volatile solvent for a phosphoric acid fuel cell were investigated. The conditions of binder and plasticizer, and the effects of substituting a volatile solvent by a non-volatile solvent were also studied. The minimum amount of the binder was about 17 wt% for the proper bubble pressure and surrounding SiC whiskers. And the maximum amount of the plasticizer was about 10wt% to be fitted into the polymer chain of the binder. The matrix prepared by using a non-volatile solvent needed longer time to dry, and its pore size was smaller compared with that of the matrix prepared by using volatile solvent. The small pore size resulted in decrease of the overall pore volume. The ionic conductivity in the condition of the same thickness was decreased due to decrease of phosphoric acid absorbancy. As the internal resistance of the electrolyte increased, the fuel cell performance slightly decreased.

  • PDF