• Title/Summary/Keyword: Bubble velocity

Search Result 251, Processing Time 0.026 seconds

Heat Transfer Characteristics under Saturated Nucleate Pool Boiling for Various Heating Surface Angles using Heater with Artificial Cavity (인공 캐비티를 가진 히터를 이용한 가열면 경사각에 따른 포화상태 풀 핵비등 열전달 기초연구)

  • Kim, Jeong-Bae
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.7-14
    • /
    • 2009
  • Nucleate pool boiling experiments with constant heat flux condition were performed using pure R11 and R113 for various surface angles under saturated pool condition. A circular heater of 1 mm diameter, with artificial cavity in the center, fabricated using MEMS technique and the high-speed controller were used to maintain the constant heat flux. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of surface angles on the bubble growth behaviors were analyzed as dimensional scales for the initial and thermal growth regions. The parameters for the bubble growth behaviors were bubble radius, bubble growth rate, sliding velocity, bubble shape and advancing and receding contact angles. These phenomena require further analysis for various surface angles, but this study will provide good experimental data with constant heat flux boundary condition for such works.

Dynamic Electrical Breakdown Characteristics of Cryogenic Liquid (극저온 액체의 동적 절연파괴 특성)

  • 김상현;김현희;김영석;정종만;정순용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.321-326
    • /
    • 1998
  • Electrical breakdown characteristics of liquid nitrogen($LN_2$) taking into consideration for application of high $T_c$ superconductor is very important. Also $LN_2$ will be used as both coolant and insulator in superconducting generator. In this paper, we investigated ac breakdown characteristics of cryogenic nitrogen gas above a $LN_2$ for rod-to plane electrode configuration. As result the breakdown mechanism of $LN_2$is dependence on bubble effect. And breakdown voltage is a ratio on bubble s size but electrodes arrangement is to make no difference. The breakdown voltage decreases slightly with increasing flow velocity, it again decreases abruptly with increasing flow velocity. These results were interpreted as the within pressure of rod electrode and Maxwell force.

  • PDF

Holdup Characteristics of Three Functional Regions in a Slurry Bubble Column (삼상 슬러리 기포탑의 세 기능영역 체류량 특성)

  • Jang, Ji Hwa;Lim, Dae Ho;Kang, Yong;Jun, Ki Won
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.359-364
    • /
    • 2010
  • Three kinds of functional regions such as continuous slurry(${\varepsilon}_f$), bubble(${\varepsilon}_b$) and wake(${\varepsilon}_w$) regions were identified, and the individual phase holdups of each functional region were determined in a three-phase slurry bubble column of 0.152 m ID. The holdups of bubble and wake were measured by adopting the electrical resistivity probe method. Effects of gas velocity and solid concentration in the slurry phase on the individual holdups of functional regions in the column were discussed. The holdup of continuous slurry phase decreased but that of bubble or wake increased, with an increase in the gas velocity in the column. The increase of solid content in the slurry phase could lead to the increase in the holdup of continuous slurry phase but decrease in the bubble or wake holdup. The portion of wake holdup was in the range of 15~40% of the bubble holdup, which decreased with increasing gas velocity or solid content in the slurry phase. The individual holdups of three functional regions were well correlated with operating variables within this experimental conditions.

Velocity Field Measurement of Impinging Waves on a Structure (구조물에 작용하는 쇄파의 속도장 측정)

  • Choi, Sang-Hyun;Ryu, Yong-Uk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.559-565
    • /
    • 2005
  • As the wave impinges on and overtops the structure, a large highly aerated region is created in front of the structure and water splashs on top of the structure. The broken wave in front of the structure and associated green water on top of the structure are highly aerated containing not only a large number of bubbles but also very large sizes of bubbles. In this paper, the velocity field of the highly aerated region and the splashing water on the top is measured using a modified PIV method incorporating the traditional PIV method with the shadowgraphy technigue by correlating the ' texture ' of the bubble images. The velocity fields of a plunging wave impacting on a structure in a two-dimensional wave flume is measured. It is found that the maximum fluid particle velocity in flout of the structure during the impinging process is about 1.5 times the phase speed of the wave, while the maximum horizontal velocity above the top is less than the phase speed, It is also found that the dam breaking solution does not work well in predicting the green water velocity.

The Thermocapillary Effect on Pure Conduction Mechanism in a Closed Square Cavity (수평 사각밀폐공간내의 전도열전달 기구에서 열모세관효과)

  • Yu, Jae-Bong;An, Do-Won;Yoo, Joo-Sik;Eom, Yong-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1209-1219
    • /
    • 2005
  • In a closed square cavity filled with a liquid, a cooling horizontal upper wall and a heating lower wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In this mechanism, Ra=1534, Temperature and velocity fields near an air-bubble in silicon-oil under a cooled upper wall were investigated. Temperature and velocity fields is visualized using the thermo-sensitive liquid-crystal and light sheet visualization technique. The quantitative analysis fer the temperature and the flow fields were carried out by applying the image processing technique to the original data. The symmetry shape of two vortexes near an air bubble was observed. As the bubble size increased, the size of vortex and the magnitude of velocity increased. In spite of elapsed time, a pair of vortexes was the unique and steady-state flow in a square cavity and wasn't induced to the other flow in the surround region.

Relationship between void fraction and mixing in bubble column flow (기포탑 유동에서의 기포분율과 혼합정도의 상관관계)

  • Zahidul, Islam MD;Lee, Jubeom;Park, Hyungmin
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • Control of mixing and transport processes are the key areas that can be benefited by understanding the hydrodynamics in gas-liquid two-phase flows. In particular, the enhanced bubble-induced liquid-phase mixing is known to be a function of void fraction distribution, gas phase velocity and so on. To further our insight on the characteristics of the liquid-phase mixing induced by the bubbles, in the present study, we experimentally investigate the mixing performance of a rectangular bubble column while changing the void fraction from 0.006 to 0.075%. A shadowgraphy technique is used to measure the gas-phase properties such as void fraction and size/velocity of bubbles. On the other hand, we use dye visualization with low diffusive buoyant dye to directly measure the level of mixing. Finally, we confirm that the time taken for full mixing scales with the inverse of volume void fraction.

Two-dimensional Numerical Simulation of the Rising Bubble Flows Using the Two Phase Lattice Boltzmann Method (2상 격자 볼츠만 방법을 이용한 상승하는 기포 유동 2차원 수치 모사)

  • Ryu, Seung-Yeob;Park, Cheon-Tae;Han, Seung-Yeul;Ko, Sung-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.31-36
    • /
    • 2010
  • Free energy based lattice Boltzmann method (LBM) has been used to simulate the rising bubble flows with large density ratio. LBM with compact discretization is able to reduce the spurious current of the static bubble test and be satisfied with the Laplace law. The terminal rise velocity and shape of the bubbles are dependent on Eotvos number, Morton number and Reynolds number. For single bubble flows, simulations are executed for various Eotvos number, Morton number and Reynolds number, and the results are agreed well with the experiments. For multiple bubbles, the bubble flow characteristics are related by the vortex pattern of the leading bubble. The coalescence of the bubbles are simulated successfully and the subsequent results are presented. The present method is validated for static, dynamic bubble test cases and compared to the numerical, experimental results.

Effect of a Thin Wire Insert on the Bubble Rise in a Miniature Tow-Phase Closed Thermosyphon (소형 밀폐형 이상 열싸이펀에서 삽입 세선이 기포상승에 미치는 영향)

  • 김원태;이윤표
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.99-109
    • /
    • 1996
  • Experimental investigations are carried out for the characteristics of bubble rise in the Miniature Two-Phase closed Thermosyphon(MTPCT) with a thin wire insert. The working fluids applied as experimental media are of three kinds: water, methanol, and ethanol. The effects of combination of the inclination with diametric ratio $\alpha$(=d$_{0}$/D$_{I}$) on rising velocity of a large bubble in the thermosyphon are explicitly analyzed. The realm of a movable bubble and the critical value of $\alpha$ are iteratively pursued to interpret the region Figures-of-Break, rooted in the governing physics relations, according to the application of working fluid. Experimental results are compared with those of analysis and critical ranges for $\alpha$ and D$_{I}$ were ascertained from comparisons.isons.

  • PDF

Thermo-Hydrodynamic Behaviors of Open Channel Flow Inside A Multi-Stage Flash Evaporator (다단 후래시 증발장치내 개수로 유동의 열.수력학적 거동)

  • 설광원;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.702-715
    • /
    • 1990
  • This paper describes behaviors of two-phase open channel flow inside the flash chamber of a horizontal Multi-Stage-Flash evaporator numerically along with the experimental observations. Bubble trajectories and the velocity and temperature distributions of the liquid phase were predicted by using the particle-source-in-cell(PSI-Cell) method with the appropriate bubble motion/growth equations. Size and number of bubble nuclei embedded in the incoming liquid(brine) were taken into account as important parameters in addition to the conventional ones such as the velocity, degree of inlet superheat, inlet opening height, and the liquid level. Bubble motions, which are unsteady, appeared to be mostly determined by the buoyancy and the drag forces. The calculations, though a number of simplifying assumptions were made, reasonably simulated the hydrodynamic behaviors of the two-phase horizontal stream observed in the experiments. The simulated temperature distributions also agreed fairly well with the other's measurements. Non-equilibrium allownaces, evaluated from the simulated temperature distributions, were within the range of those obtained from the existing correlations, and reduced with the increases of the number and size of incoming bubble nuclei due to vigorous flashing.

Size Verification of Small and Large Bubbles in a Bubble Column (기포탑에서 작은기포와 큰기포의 크기 구별)

  • Seo, Myung Jae;Jin, Hae-Ryong;Lim, Dae Ho;Lim, Ho;Kang, Yong;Jun, Ki-Won
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.304-309
    • /
    • 2012
  • Size verification of small and large bubbles in a bubble column was investigated by employing the dynamic gas disengagement (DGD) method and dual electrical resistivity probe (DRP) method, simultancously. The holdups of large and small bubbles in the bubble column in a given operating condition were obtained by means of the DGD method by measuring the pressure drop variation in the column with a variation of time after stopping the gas input into the column. The size and frequency of bubbles were measured by the DRP method in the same operating condition, from which the bubble holdup of each range of size was obtained. The verification of size in determining the large or small bubbles was decided by comparing the holdups of large or small bubbles measured by the DGD method with that measured by the DRP method. Filtered compressed air and tap water were used as a gas and a continuous liquid medium. The diameter and height of the bubble column were 0.102 m and 1.5 m, respectively. The demarcation size between the large and the small bubbles in the bubble column was 4.0~5.0 mm; the demarcation size was about 5.0 mm when the gas velocity was in the relatively low range, but about 4.0 mm when the gas velocity was in the relatively high range, within this experimental conditions.