• Title/Summary/Keyword: Bubble flow behavior

검색결과 86건 처리시간 0.023초

마이크로 엑츄에이터의 설계변수에 따른 유동특성 해석 (Numerical analysis of liquid flow characteristics according to the design parameters of a bubble jet microactuator)

  • 고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권7호
    • /
    • pp.605-612
    • /
    • 2016
  • 버블젯 타입 마이크로 엑츄에이터의 설계변수에 따른 유동특성에 관한 수치해석적 연구를 수행하였다. 수치 모델은 저장소로 부터의 잉크 유동과 기포의 성장 및 소멸, 노즐을 통한 액적의 토출과 리필 과정을 포함한다. 기포의 거동은 전체 엑츄에이터의 성능에 중요한 영향을 미치는 요소이기 때문에, 본 연구에서는 open pool 해석을 통하여 기포의 성장과 소멸 및 소멸시의 캐비테이션 현상에 대해 살펴보았다. 또한 마이크로 엑츄에이터의 노즐 형상의 변화, 챔버와 리스트릭터의 기하학적 변화에 따른 액적의 토출과 잉크 리필과정에 대한 수치예측을 수행하였다. 설계변수의 변화에 따른 수치해석의 결과는 마이크로 엑츄에이터의 성능특성을 예측할 수 있으며 또한 마이크로 엑츄에이터의 최적설계에 유용하리라 판단된다.

주입 위치에 따른 기포와 상변화물질의 유동 상호 작용에 관한 연구 (Study on Flow Interaction between Bubble and Phase Change Material according to Injection Location)

  • 김민혁;지윤영;손동기;고한서
    • 한국가시화정보학회지
    • /
    • 제21권3호
    • /
    • pp.75-84
    • /
    • 2023
  • In this study, we conducted analysis of bubble dynamics and flow of liquid phase change material(PCM) using shadowgraphy and particle image velocimetry(PIV). Characteristics of internal flow varied depending on locations of injection when solid PCM was liquefied from heated vertical wall. When bubbles rose immediately, they exhibited elliptical shape and zigzag trajectory. In contrast, when bubbles rose after merging at the bottom of solid PCM, with equivalent diameter for the inter-wall distance of 0.64 or greater, they showed a jellyfish shape and strong rocking behavior. It was observed by the PIV that the small ellipse bubbles made most strong flow inside the liquid PCM. Furthermore, the flow velocity was highest in the case of front injection, as the directions of temperature gradients and bubble-driven flow were aligned. The results underscore the significant influence of injection location on various characteristics, including bubble size, shape, rising path of bubbles, and internal flow.

가시화를 통한 Gas Injection System에 관한 연구 (Analysis of Gas Injection System based on Flow Visualization)

  • 서동표;오율권
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.85-88
    • /
    • 2002
  • In order to visually analyze the flow characteristics, gas was injected into the liquid bath through nozzle installed at the center of bottom of the bath. When gas was injected into the liquid bath, several flow patterns were observed bubble-liquid plumb, the spout flow that occurred at the free surface, liquid circulation flow by bubble's behavior, etc. Various bubbles, from small bubbles to Taylor bubbles, consisted of the bubble-liquid plumb. In the pure liquid region, the large and small several vortices were formed and irregularly circulated. These irregular repetition and circulation play a important role of mixing in the bath. The vortices were developed in the upper and the side wall regions and the movement of flow in the low region was very small. It is known as 'dead zone'.

  • PDF

자유표면이 상승기포의 파괴에 미치는 영향에 대한 수치해석적 연구 (A NUMERICAL STUDY OF THE FREE SURFACE EFFECT ON RISING BUBBLE)

  • 윤익로;신승원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.376-379
    • /
    • 2010
  • Bubble rising phenomenon is widely founded in many industrial applications such as a stream generator in power plant. Many experimental and numerical researches have been already performed to predict dynamic behavior of the bubble rising process. Recently numerical approaches are getting popular since it can offer much detailed information which is almost impossible to obtain from the experiments. Rising bubble could penetrate through the top free surface which makes the problem much more complicate in addition to the phase changing effect even with latest numerical techniques. In this paper, the top free surface effect on rising bubble has been investigated. The gas-liquid interface was explicitly tracked using high-order Level Contour Reconstruction Method(LCRM) which is a hybridization of Front-Tracking and Level-Set method. Break-up behavior of rising bubble at free surface showed different characteristics with initial diameter of bubble.

  • PDF

풀비등과 저Re수 흐름비등에서의 기포의 형상과 성장에 대한 연구 (Study on the Relationships between Single Bubble Growth Behavior and Bubble Shape Assumption in Pool and low-He Flow Boiling)

  • 김정배
    • 한국태양에너지학회 논문집
    • /
    • 제29권3호
    • /
    • pp.73-82
    • /
    • 2009
  • 포화상태 핵비등과 저 Re수의 흐름비등에서 얻어진 실험결과를 바탕으로 하여, 기포가 성장하는 동안의 등가 기포 직경과 열전단율의 거동에 대한 기포 형상 가정의 효과를 제시하기 위한 해석적인 연구를 수행하였다. 이러한 목적을 달성하기 위하여, 등가 기포 반경이 기포가 성장하는 동안 촬영된 기포의 이미지로부터 얻어질 수 있는 형상 가정을 이용하여 계산되었다. 그리고 열전달율을 포화상태 핵비등 동안 미세크기의 히터와 휘스톤브리지 회로를 이용하여 측정하였다. 그리고, 기포 형상 가정의 효과를 실험결과와 비교하였고, 이를 통해 단일 기포의 성장 거동을 분석하기 위한 기포 형상 가정이 매우 중요함을 보였다.

공기구동 이젝터를 이용한 ABB (Air Bubble Barrier)의 기포거동 특성 연구 (II): 기포거동 특성의 비교 분석 (A Study on Bubble Behavior Generated by an Air-driven Ejector for ABB (Air Bubble Barrier) (II): Comparison of Bubble Behavior with and without Ejector)

  • 서현덕;알리유 무사 알리유;김효근;김경천
    • 한국가시화정보학회지
    • /
    • 제15권2호
    • /
    • pp.59-67
    • /
    • 2017
  • To verify floatability of ABB (Air bubble barrier), we compared bubble swarm behavior with and without the air-driven ejector. Experiment was conducted using the fabricated air-driven ejector with 5 mm nozzle on the bottom of 1 m3 water tank. Reynolds number of air in the nozzle was ranged 1766-13248. We analyzed data with statistical method using image processing, particle mage velocimetry (PIV) and proper orthogonal decomposition (POD) analysis. As a result of POD analysis, there was no significant eigenmode in bubbly flow generated from the ejector. It means that more complex turbulent flows were formed by the ejector, thereby (1) making bubbles finer, (2) promoting three-dimensional energy transfer between bubble and water, and (3) making evenly distributed velocity profile of water. It is concluded that the air-driven ejector could enhance the performance of ABB.

포화상태 풀비등시 단일기포의 성장에 관한 연구 (Study on the Single Bubble Growth During Nucleate Boiling at Saturated Pool)

  • 김정배;이한춘;오병도;김무환
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.169-179
    • /
    • 2005
  • Nucleate boiling experiments on heating surface of constant wall temperature were performed using R113 for almost saturated pool boiling conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain a constant wall temperature condition of heating surface and to measure the heat flow rate with high temporal and spatial resolutions. Bubble images during the bubble growth were taken as 5000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble growth behavior was analyzed using the new dimensionless parameters for each growth regions to permit comparisons with previous experimental results at the same scale. We found that the new dimensionless parameters can describe the whole growth region as initial and later (thermal) respectively. The comparisons showed good agreement in the initial and thermal growth regions. In the initial growth region including surface tension controlled, transition and inertia controlled regions as divided by Robinson and Judd, the bubble growth rate showed that the bubble radius was proportional to $t^{2/3}$ regardless of working fluids and heating conditions. And in the thermal growth region as also called asymptotic region, the bubble showed a growth rate that was proportional to $t^{1/5}$, also. Those growth rates were slower than the growth rates proposed in previous analytical analyses. The required heat flow rate for the volume change of the observed bubble was estimated to be larger than the heat flow rate measured at the wall. Heat, which is different from the instantaneous heat supplied through the heating wall, can be estimated as being transferred through the interface between bubble and liquid even with saturated pool condition. This phenomenon under a saturated pool condition needs to be analyzed and the data from this study can supply the good experimental data with the precise boundary condition (constant wall temperature).

균일형 유로에서 기포의 거동에 관한 연구 (Study on the Behaivor of Bubbles in Array Type Flow Channels)

  • 정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.84-90
    • /
    • 2013
  • The hydrogen or oxygen gas producted by electrolysis become many bubbles in the electrolyte, but exact data on the behavior of these bubbles in the separator of an electrolysis stack didn't become known. In this study, the flow visualization experiment on the behavior of bubbles in the flow pattern of the array type separator is performed by using of a visible alkaline electrolysis stack and a stereoscopic microscope. As the results, a fine size bubbles adhered to the surface of the flow pattern grow to large sized bubbles until each bubble's buoyance is lager than the sum of external force and weight. And then the large bubbles flow into the upper area of the separator. Bubbles adhered to the surface of the vertical flow pattern grow quickly than them adhered to the surface of the horizontal flow pattern. Also, he electrolysis efficiency is declined because many multi-size bubbles occupied the wide volume in the flow pattern.

NUMERICAL INVESTIGATION OF INTERACTION BEHAVIOR BETWEEN CAVITATION BUBBLE AND SHOCK WAVE

  • Shin, Byeong-Rog;An, Young-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.215-220
    • /
    • 2008
  • A numerical method for gas-liquid two-phase flow is applied to solve shock-bubble interaction problems. The present method employs a finite-difference Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. By this method, a Riemann problem for shock tube was computed for validation. Then, shock-bubble interaction problems between cylindrical bubbles located in the liquid and incident liquid shock wave are computed.

  • PDF

NUMERICAL INVESTIGATION OF INTERACTION BEHAVIOR BETWEEN CAVITATION BUBBLE AND SHOCK WAVE

  • Shin, Byeong-Rog;An, Young-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.215-220
    • /
    • 2008
  • A numerical method for gas-liquid two-phase flow is applied to solve shock-bubble interaction problems. The present method employs a finite-difference Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. By this method, a Riemann problem for shock tube was computed for validation. Then, shock-bubble interaction problems between cylindrical bubbles located in the liquid and incident liquid shock wave are computed.

  • PDF