• Title/Summary/Keyword: Bubble defect formation

Search Result 5, Processing Time 0.023 seconds

Numerical Analysis of Effects of Mold Cavity Shape on Bubble Defect Formation in UV NIL (UV NIL공정에서 몰드 중공부 형상과 기포결함에 대한 수치해석)

  • Lee, Hosung;Kim, Bo Seon;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.596-602
    • /
    • 2018
  • Nanoimprint lithography (NIL) is an emerging technology that enables cost-effective and high-throughput nanofabrication. In ultraviolet (UV) NIL, low-cost and high-speed production can be achieved using a non-vacuum environment at room temperature and low pressure. However, there are problems with the formation of bubble defects in such an environment. This paper investigates the shape of the mold cavity and the bubble defect formation in UV NIL in a non-vacuum environment. The bubble defect formation was simulated using two-dimensional flow analysis and the VOF method for commonly used cavity mold shapes (rectangular, elliptical, and triangular). The characteristics of the resist flow front and various contact angles were also analyzed. The shape of the mold cavity had a very significant effect on the bubble defect formation. For all cavity shapes, a smaller contact angle with the mold and larger contact angle with the substrate decreased the possibility of bubble defect formation. The elliptical shape was the most effective for preventing bubble defect formation.

Numerical Analysis of Effects of Velocity Inlet and Residual Layer Thickness of Resist on Bubble Defect Formation (레지스트 잔류층 두께와 몰드 유입속도가 기포결함에 미치는 영향에 대한 수치해석)

  • Lee, Woo Young;Kim, Nam Woong;Kim, Dong Hyun;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.61-66
    • /
    • 2015
  • Recently, the major trends of NIL are high throughput and large area patterning. For UV NIL, if it can be proceeded in the non-vacuum environment, which greatly simplifies tool construction and greatly shorten process times. However, one key issue in non-vacuum environment is air bubble formation problem. In this paper, numerical analysis of bubble defect of UV NIL is performed. Fluent, flow analysis focused program was utilized and VOF (Volume of Fluid) skill was applied. For various resist-substrate and resist-mold angles, effects of velocity inlet and residual layer thickness of resist on bubble defect formation were investigated. The numerical analyses show that the increases of velocity inlet and residual layer thickness can cause the bubble defect formation, however the decreases of velocity inlet and residual layer thickness take no difference in the bubble defect formation.

Analytic and Numerical Study for air Bubble Defect of UV-NIL Process (UV-NIL 공정의 기포 결함에 대한 해석적 및 수치적 연구)

  • Seok, Jeong-Min;Kim, Nam-Woong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.473-478
    • /
    • 2012
  • In this paper, the air bubble formation mechanism in the rectangular and triangular line-and-space pattern during dispensing UV Nanoimprint Lithography (UV-NIL) at an atmospheric condition is studied. To investigate the air bubble formation, an analytic model based on geometric approach and a numerical model based on CFD(computational fluid dynamics) were used in the analysis. It was found in the numerical analysis that every time the flow front passed through a corner of the pattern, it proceeded with a newly formed shape, occurring due to interface reconfiguration, since the flow fronts were formed such that they minimized the surface energy. Moreover, the conditions for the air bubble formation were investigated by applying the analytic analysis based on geometric approach and the numerical analysis. Good overall agreement was found between the analytic and numerical analysis.

TEM investigation of helium bubble evolution in tungsten and ZrC-strengthened tungsten at 800 and 1000℃ under 40keV He+ irradiation

  • I. Ipatova;G. Greaves;D. Terentyev;M.R. Gilbert;Y.-L. Chiu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1490-1500
    • /
    • 2024
  • Helium-induced defect nucleation and accumulation in polycrystalline W and W0.5 wt%ZrC (W0.5ZrC) were studied in-situ using the transmission electron microscopy (TEM) combined with 40 keV He+ irradiation at 800 and 1000℃ at the maximum damage level of 1 dpa. Radiation-induced dislocation loops were not observed in the current study. W0.5ZrC was found to be less susceptible to irradiation damage in terms of helium bubble formation and growth, especially at lower temperature (800 ℃) when vacancies were less mobile. The ZrC particles present in the W matrix pin the forming helium bubbles via interaction between C atom and neighbouring W atom at vacancies. This reduces the capability of helium to trap a vacancy which is required to form the bubble core and, as a consequence, delays, the bubble nucleation. At 1000 ℃, significant bubble growth occurred in both materials and all the present bubbles transitioned from spherical to faceted shape, whereas at 800 ℃, the faceted helium bubble population was dominated in W.

The Weldability of $6mm^t$ Primer-coated Steel for Shipbuilding Using $CO_2$ Laser (II) - Dynamic Behavior of Laser Welding Phenomenon and Composition of Porosity and Vaporized-particle - ($6mm^t$조선용 프라이머 코팅강판의 $CO_2$레이저 용접성 (II) - 레이저 용접현상의 동적거동과 기공 및 증발입자의 조성 -)

  • Kim, Jong-Do;Park, Hyun-Joon
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.71-78
    • /
    • 2006
  • It has been reported that good quality weld beads are not easily obtained during the $CO_2$ CW laser welding of primer coated plate. However, by introducing a small gap clearance in the lap position, the zinc vapor can escape through it and sound weld beads can be acquired. Therefore, this study examines for keyhole behavior by observing the laser-induced plasma and investigates the relation between keyhole behavior and formation of weld defect. Laser-induced plasma has accompanied with the vaporizing pressure of zinc ejecting from keyhole to surface of primer coated plate. This dynamic behavior of plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser welding. As a result of observing the composition of porosity, much of Zn element was found from inner surface of porosity. But Zn was not found from the dimple structure fractured at the weld metal. By analyzing of vaporizing element in laser welding, a component ratio of Zn was decreased by introducing a small gap clearance. Therefore we can prove that the major cause of porosity is the vaporization of primer in lap position. Mechanism of porosity-formation is that the primer vaporized from the lap position accelerates dynamic behavior of the key hole and the bubble separated from the key hole is trapped in the solidification boundary and romaines as porosity.