• Title/Summary/Keyword: Bubble Size

Search Result 323, Processing Time 0.027 seconds

Comparison of particle removal efficiency between the physical cleaning methods in the fabrication of liquid crystal displays (LCD 제조공정에서 물리적 세정법의 미립자 제거효율 비교 연구)

  • Park, Chang-Beom;Yi, Seung-Jun;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.795-801
    • /
    • 2010
  • As the fabrication technology of LCDs (Liquid Crystal Displays) advances, the size of mother glass substrates is getting larger, and the fabrication process is becoming finer. Accordingly, the importance of cleaning processes grows in the fabrication process of LCDs. In this study, we have compared and evaluated the particle removal efficiency for three different methods of physical cleaning, which are brush, bubble jet, and aqua/air cleaning. Using the seventh generation glass substrate, the particle removal efficiency has been investigated by changing operation conditions such as a flow rate of deionized water, pressure, contact depth between a brush bristle and a glass substrate, and so forth. In the case of brush cleaning, the cleaning efficiency barely changes after a critical point when the contact depth is varied. While the cleaning efficiency of bubble jet cleaning is almost independent of pressure, that of aqua/air cleaning is affected by pressure up to a critical point, but is not changed after it. We note the brush cleaning is the most effective among the three cleaning methods under our experimental conditions.

Characteristics of Continuous Preparation of ZnO Powder in a Micro Drop/bubble Fluidized React (마이크로 액적/기포 유동반응기에서 ZnO 입자의 연속제조 특성)

  • Lee, Seung Ho;Yang, Si Woo;Lim, Dae Ho;Yoo, Dong Jun;Lee, Chan Ki;Kang, Gyung Min;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.597-602
    • /
    • 2015
  • Characteristics of continuous preparation of ZnO powder were investigated in a micro drop/bubble fluidized reactor of which diameter and height were 0.03 m and 1.5 m, respectively. The flow rate of carrier gas for transportation of precursors to the reactor was 6.0 L/min and the concentration of Zn ion in the precursor solutions was 0.4 mol/L, respectively. Effects of reaction temperature (973 K~1,273 K) and flow rate of micro bubbles (0~0.4 L/min) on the pore characteristics of prepared ZnO powder were examined. The optimum reaction temperature for the maximum porosity in the ZnO powder was 1,073 K within this experimental condition. The mean size of ZnO powder prepared continuously in the reactor decreased but the surface of the powder became smooth, with increasing reaction temperature. The injection of micro bubbles into the reactor could enhance the formation of pores in the powder effectively, and thus the mean BET surface area could be increased by up to 58%. The mean size of prepared ZnO powder was in the range of $1.25{\sim}1.75{\mu}m$ depending on the reaction temperature.

Prediction and Verification of Water-entry Traces Size of Small Falling Objects into the Sea (해상 소형 낙하물 입수흔적의 크기 예측 및 검증)

  • Min, Anki;Hwang, Tae-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.146-153
    • /
    • 2015
  • An unmanned aerial photography method by using an unmanned helicopter is useful method for measuring of the water-entry traces of small falling objects into the sea. Pixel sizes on the aerial photograph may be too large due to a limit of camcorder resolution and a wide shooting area. If the pixel size is too large, identification of water-entry trace is impossible. Thus an accurate prediction of water-entry trace size is required. The traces of water-entry could be classified into three types such as splash, water column, and bubble. Diameters of each trace are predicted by water-entry impact pressure theories, cavity theories, and trial test results. The results are verified by drop tests using an unmanned helicopter at two water-entry speeds. As a result, prediction and test results showed sufficient similarity to evaluate the identifiability of water-entry trace.

Characteristics of Wakes in a Viscous Liquid Medium of a Simulated GTL Process (모사된 GTL공정의 점성액체 매체에서 wake의 특성)

  • Lim, Dae Ho;Jang, Ji Hwa;Kang, Yong;Jun, Ki Won
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.571-576
    • /
    • 2011
  • Characteristics of bubble driven wakes were investigated in a simulated GTL process(0.102 m ${\times}$ 1.5 m in height) with viscous liquid medium. Effects of gas velocity(0.04 ~ 0.12 m/s) and liquid viscosity(0.001 ~ 0.050 $Pa{\cdot}s$) on the wake characteristics such as rising velocity, frequency, size and holdup were determined by employing a resistivity probe method. The wake phase formed behind the rising multi-bubbles as well as single bubbles were detected effectively from the conductivity fluctuations measured by the probe. Compressed, filtered and regulated air and aqueous solutions of Carboxy Methyl Cellulose(CMC) were used as a dispersed gas phase and a continuous liquid medium, respectively. It was found that the rising velocity and size of wake phase increased with an increase in gas velocity or liquid viscosity. The holdup and frequency of wake phase increased with increasing gas velocity due to the increase of gas input into the process with increasing gas velocity. However, the values of holdup and frequency of wake phase decreased with increasing liquid viscosity, since the size of bubbles and thus that of wakes increased with increasing liquid viscosity. The ratio of wake holdup to that of gas phase, which was in the range of 0.25 ~ 0.48, increased with an increase in liquid viscosity but decreased with gas velocity. The wake characteristics were well correlated in terms of operating variables within this experimental conditions.

Effects of Nucleating Agents on the Morphological, Mechanical and Thermal Insulating Properties of Rigid Polyurethane Foams

  • Kang, Ji-Woung;Kim, Ji-Mun;Kim, Min-Soo;Kim, Youn-Hee;Kim, Woo-Nyon;Jang, Won;Shin, Dae-Sig
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.856-862
    • /
    • 2009
  • This study examined the effects of liquid and solid additives on the morphological, mechanical and thermal insulating properties of rigid polyurethane foams (PUFs). The PUFs synthesized with tetramethylsilane (TEMS) as a liquid-type additive showed a smaller average cell size and lower thermal conductivity than those with the aerosil 200 and clay 30B as solid-type additives. When TEMS was added, the average cell size of the PUF became more uniform and finer due to the reduced surface tension of the polymer solution, which increased the nucleation rate and number of bubbles produced and reduced cell size. The PUFs with TEMS showed the highest closed cell contents among the PUFs prepared using TEMS, aerosil 200 and clay 30B. This suggests that the insulation properties of PUF can be determined by both the size of the cell structure and the amount of closed cell contents in the system. The compression and flexural strengths of the PUF increased slightly when the aerosil 200, clay 30B and TEMS were added compared those of the neat PUF. The reaction profiles of the PUFs showed a similar gel and tack tree time with the reaction time among the PUFs synthesized with three different additives and neat PUF. This suggests that the nucleating additives used in this study do not affect the bubble growth of the chemical reaction, and the additives may act as nucleating agents during the formation of PUF. From the above results of the cell size, thermal conductivity, closed cell contents and reaction profile of the PUFs, liquid-type nucleating agent, such as TEMS, is more effective in decreasing the thermal conductivity of the PUF than solid-type nucleating agent, such as aerosil 200 and clay 30B.

A Numerical Analysis on the Coating Thickness in Continuous Hot-Dip Galvanizing (연속 아연 도금 코-팅 두께에 관한 수치 해석적 연구)

  • Lee, Dong-Won;Shin, Seung-Young;Kim, Byung-Ji;Kwon, Young-Doo;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2955-2960
    • /
    • 2007
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early day that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. And, it is known that the problem of splashing is caused mainly by the existence of separation bubble at the neighbor of the strip surface. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard ${\kappa}-{\varepsilon}$ turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to reduce the size of separation bubble and to enhance the cutting ability at the strip, it is recommendable to use an air knife having the constant expansion rate nozzle.

  • PDF

Evaluation of Flotation Efficiency and Particle Separation Characteristics of Carbon Dioxide Bubbles using Collision Efficiency Model (단일포집자충돌(SCC) 모델을 이용한 이산화탄소기포의 입자분리특성과 부상효율 평가)

  • Lee, Jun-Young;Kim, Seong-Jin;Yoo, Young-Hoon;Chung, Paul-Gene;Kwon, Young-Ho;Park, Yang-Kyun;Kwak, Dong-Heui
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.129-136
    • /
    • 2012
  • In this century, scientists realized that carbon dioxide gas in the atmosphere cause a greenhouse effect which affects the planet's temperature. Therefore lots of attempts have carried out to decrease the discharge of carbon dioxide gas in the field. The dissolved carbon dioxide flotation (DCF) process was developed as an alternative of DAF process to decrease the discharge and reuse of carbon dioxide as well as to save energy consumption. To investigate the particle separation characteristics and the flotation efficiency of carbon dioxide, SCC model was employed in the DCF process which has been applied extensively for the evaluation and simulation in the DAF process. The simulation results by the SCC model revealed the predicted curve of flotation efficiency became decreased gradually over the optimal pressure range of saturator about 1.6 atm in accordance with the experiment results of the DCF pilot plant and the size distribution and the bubble volume concentration of $CO_{2}$ bubbles depending on the operation pressure of saturator. The findings through the simulation results led to the conclusion that there was no significant difference between $CO_{2}$ bubbles and air bubbles, affecting on the practical flotation efficiency, in terms of the initial collision and attachment efficiency.

Mixed Flow Characteristics of Aeration Process for Recirculation Aquaculture System Using Ejector (이젝터를 이용한 순환양식 시스템 폭기공정의 혼합유동 특성)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.847-854
    • /
    • 2013
  • The objective of this study is to experimentally investigate the mixed flow and oxygen transfer characteristics of a horizontally injected aeration process using an annular nozzle ejector. The flow rate ratio, pressure ratio and ejector efficiency are calculated using the measured flow rate and pressure with the experimental parameters of the ejector pitch and primary flow rate. The visualization images of mixed flow issuing from the ejector are analyzed qualitatively, and the volumetric oxygen transfer coefficients are calculated using the measured dissolved oxygen concentration. The mixed flow behaves like a buoyancy jet or horizontal jet owing to the momentum of primary flow and air bubble size. The buoyancy force of the air bubble and the penetration of mixed flow are found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

An Experimental Study on the Orifice Nozzle System that Generates Micro-bubbles by Self-suction of Air with a Recirculating Flow (재순환 유동 공기 자가흡입에 의한 마이크로버블 발생 오리피스 노즐 시스템에 대한 실험적 연구)

  • Oh, Shin-il;Park, Sang-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.82-88
    • /
    • 2018
  • An experimental study was performed on the orifice nozzle system that generates micro-bubbles by air self-suction using a venturi nozzle. This study experimentally investigates the amount of air sucked into the venturi nozzle and the number of micro-bubbles generated by the orifice nozzle system in Cases 1 and 2. The experimental conditions were varied by changing the diameter of the orifice nozzle (d=2~7 mm) and the number of holes of the perforated plate nozzle (n = 2-12). In Case 1, the air self-suction was more than 2 LPM at $d{\leq}4mm$. When d = 4 mm, the total number of bubbles was 29,777, and it was confirmed that micro-bubbles occupied approximately 65% of the total number of bubbles. In Case 2, the air self-suction was maintained constant at approximately 2.5 LPM regardless of the number (n) of holes. The total amount of bubbles increased when n increased but remained constant at approximately 44,000 when $n{\geq}7EA$. It was also confirmed that more than 80% of all bubbles were micro-bubbles when $n{\geq}10EA$. Thus, the number of micro-bubbles increased by approximately 15% compared to the experimental result of Case 1, which was optimized with d = 4 mm.

Evaluation of Initial Collision-Attachment Coefficient and Flotation Characteristics Using Population Balance in Microbubble Flotation Process for Microplastics Separation (미세플라스틱 분리를 위한 미세기포 부상공정에서 개체군수지를 이용한 초기 부착 계수 및 부상특성의 평가)

  • Jung, Heung Joe;Lee, Jae Wook;Kwak, Dong Heui
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.1
    • /
    • pp.10-19
    • /
    • 2021
  • In the flotation process to remove microplastic (MP) particles, the attachment and separation efficiency is determined by the basic physicochemical characteristics of MP particles as well as bubbles. To evaluate the flotation characteristics of MP particles, we carried out a series of simulations using the population balance (PB) model. The initial attachment coefficient (αo) of MP particles was in the range of 0.2-0.275, and it was slightly lower than that of typical particles, such as clay, debris and algae particles, which exist in water bodies, αo, 0.3-0.4. The relative bubble number (RBN) attached to the surface of the typical number of bubbles was 0.30 and 0.32 for MP 30 ㎛ and MP 58 ㎛, respectively. In comparison, the RBN of larger MP particles (138 ㎛) was as high as 0.53. Furthermore, smaller microbubbles were required to separate properly or additional treatment needed to be applied to enhance collision and attachment efficiency since the flotation of MP particles was found to be difficult to treat as high-rate. As a result of comparing the removal rate (experimental value) of MP particles obtained from the batch-type flotation apparatus and the flotation removal rate (predicted value) of MP obtained through the PB model, the final particles by the particle size of MP overall except for the initial separation time area. With respect to the removal efficiency, the observed and predicted values were similar, and it was confirmed that the floating separation characteristics and evaluation of the MP particles through the PB model could be possible.