• Title/Summary/Keyword: Bubble Particles

Search Result 80, Processing Time 0.027 seconds

Study of capturing micro-sized floating polyethylene particles using a bubble (기포를 이용한 미세 부유 폴리에틸렌 입자 포획에 대한 연구)

  • Jinyong, Choi;Hyungmin, Park
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.67-73
    • /
    • 2022
  • Underwater environmental pollution caused by microplastic particles is considered to be one of the most serious problems in many oceans and countries nearby. Previous academic studies or field technologies tried to remove the micro-sized particles are often energy-consuming and costly, so it is hard to be employed for the actual uses. In this study, the mechanism of removal of micro-sized polyethylene spheres (size in order of 100㎛) using a rising bubble is experimentally investigated. It is found that the particles are either affected by bubble wake, thus translocated close to the water surface, or pushed far away by the surrounding fluid flow, depending on their initial position relative to the bubble. By scrutinizing the visualized behaviors of bubble-particle interaction, we draw the governing parameter, i.e., the polar angle between the particle and the bubble, to determine the effective capturing of the particles with a rising bubble.

The Measurement of Bubble Driven Flow Using PIV and Digital Mask Technique (PIV 기법과 Digital Mask 기법을 적용한 버블유동 측정)

  • Kim, Sang-Moon;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2700-2703
    • /
    • 2008
  • An experiment on bubble-driven flow was performed in order to understand fundamental knowledge of flow structure around a rising bubble in a stagnant fluid. The measurement technique consists of a combination of the three most often used PIV techniques in multiphase flows: PIV with fluorescent tracer particles, the digital phase separation with a masking technique and a shadowgraphy. The key point of the measurement is that the background intensity of a PIV recording can be shifted to a higher level than a bubble region using a shadowgraphy in order to distinguish from fluorescent particles and a bubble as well. Flow fields were measured without an inaccurate analysis around a fluid-bubble interface by using only one camera simply.

  • PDF

Development of Wafer Cleaning Equipment Using Nano Bubble and Megasonic Ultrasound (나노 버블과 메가소닉 초음파를 이용한 반도체 웨이퍼 세정장치 개발)

  • Nohyu Kim;Sang Hoon Lee;Sang Yoon;Yong-Rae Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.66-71
    • /
    • 2023
  • This paper describes a hybrid cleaning method of silicon wafer combining nano-bubble and ultrasound to remove sub-micron particles and contaminants with minimal damage to the wafer surface. In the megasonic cleaning process of semiconductor manufacturing, the cavitation induced by ultrasound can oscillate and collapse violently often with re-entrant jet formation leading to surface damage. The smaller size of cavitation bubbles leads to more stable oscillations with more thermal and viscous damping, thus to less erosive surface cleaning. In this study, ultrasonic energy was applied to the wafer surface in the DI water to excite nano-bubbles at resonance to remove contaminant particles from the surface. A patented nano-bubble generator was developed for the generation of nano-bubbles with concentration of 1×109 bubbles/ml and nominal nano-bubble diameter of 150 nm. Ultrasonic nano-bubble technology improved a contaminant removal efficiency more than 97% for artificial nano-sized particles of alumina and Latex with significant reduction in cleaning time without damage to the wafer surface.

  • PDF

Evaluation of Dust Removal Efficiency on Roadway Structures Using Ultrafine Bubble Water Jet (초미세기포 water jet을 이용한 도로 시설물 분진 제거 효율 평가)

  • Kim, Hyun-Jin;Park, Il-gun
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.39-46
    • /
    • 2021
  • A road structure washing vehicle equipped with a 4 HP, 80 LPM ultrafine bubble generator was used to clean a tunnel wall and the surface of the surrounding structure, consisting of concrete and tiles, in a heavy traffic area around an apartment complex in the city. Ultrafine bubbles were generated by supplying air at 2 to 3 LPM and using a specially designed nozzle, whereas fine bubbles made by an impeller in a gas-liquid mixing self-priming pump were produced with an average diameter of 165.4 nm and 6.81 × 107 particles mL-1. Using a high pressure washer gun that can perform high-pressure cleaning at 150 bar and 30 LPM, ultrafine bubbles were used to wash dust adsorbed on the surface of the road structures. The experimental analysis was divided into before and after washing. The samples were analyzed by applying ISO 8502-3 to measure surface contamination of dust adsorbed on the surface. Using the transparent tape attached to the surface, the removal rate was calculated by measuring the weight of the dust, and the number of particles was calculated using the gravimetric method and the software, ImageJ. The results of the experiment showed that the number of dust particles adsorbed on the tile wall surface before and after washing were 3,063 ± 218 particles mL-1 and 20 ± 5 particles mL-1, respectively, with weights of 580 ± 82 mg and 13 ± 4 mg. Particles on the surface of the concrete structure before and after washing were 8,105 ± 1,738 particles mL-1 and 39 ± 6 particles mL-1, respectively, with weights of 1,448 ± 190 mg and 118 ± 32 mg.

The Reaction Efficiency and Surface Characteristics for Metallic Ions in Air Flotation Process (부상공정에서 금속이온의 기포 표면 전위 특성 및 반응효율)

  • Han, Moo-Young;Dockko, Seok;Kim, Young-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.222-227
    • /
    • 2004
  • Flotation processes involve the use of very small bubbles (micro-bubbles) to separate particles from water. The process has become a good alternative to sedimentation, especially where the particles are small or of low density. Although the flotation process commences with a collision between particles and bubbles, most research has been focused only on the characteristics of the particles. In this paper, recent theoretical and experimental research on the characteristics of bubbles is summarized. The effect on the collision efficiency of the size and charge of bubbles is calculated through trajectory analysis. The size and charge of bubbles are measured under different conditions and the ramifications of the results are discussed. The results may lead to a better understanding and optimization of the existing process. In particular, we discuss an idea that a new advanced flotation process might be possible by the modification of the characteristics of the bubble alone or of both bubble and particle.

Time-Resolved Two-Phase PIV Measurements of Freely Rising Bubble Flows with an Image Separation Method (단일 카메라의 영상분리를 이용한 자유 상승 기포의 고속 이상 유동 PIV 계측)

  • Sung Jaeyong;Park Sang Min;Yoo Jung Yul
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • A time-resolved two-phase PIV system using a single camera has been developed, which introduces a method of image separation into respective phase images, and is applied to freely rising single bubble. Gas bubble, tracer particle and background have different gray intensity ranges on the same image frame when reflection and dispersion in the phase interface are intrinsically eliminated by optical filters and fluorescent particles. Further, the signals of the two phases do not interfere with each other. Gas phase velocities are obtained from the separated bubble image by applying the two-frame PTV. On the other hand, liquid phase velocities are obtained from the tracer particle image by applying the cross-correlation algorithm. As a result, the bubble rises rectilinearly just after it is released from an injector and then has a zigzag motion in the far field. From the trajectory of the bubble, it is found that the period of the zigzag motion is closely related to the vortex shedding although the wavelength of it varies along its movement.

  • PDF

Numerical Study on the Flow Characteristics of Bubble Particles in Bubble Reduction Device (기포 저감 장치의 기포입자 유동특성에 따른 수치해석에 관한 연구)

  • Mun, Hyun-Sik;Yoo, Young-Cheol;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.144-149
    • /
    • 2020
  • Bubble reduction devices are intended to solve problems related to the quantitative supply of oil. Therefore, in this study, numerical analysis was conducted to verify the flow characteristics of bubble particles during the operation of a bubble reduction device. As a result of the basic analysis, the area where the rise and fall of bubbles were most active was found, and numerical calculations were performed focusing on the points. Before the numerical calculations, a non-dimensional derivation was performed to secure homogeneity among the variables. Based on the data obtained from non-dimension derivation, 25 variable conditions for each particle size and fluid velocity were set. Through separate calculations, the equation for bubble rise and fall was derived. By calculating the ratio of drag and buoyancy for each variable, if the drag force acting on the bubble was greater than buoyancy, the bubble falls, and bubbles are not reduced. If the buoyancy is larger than drag, the bubble rises, and the bubble is reduced. Through the analysis, the rise and fall of the bubble were confirmed, and the results were consistent with the separate numerical calculations.

Biodegradation of Toluene using Biofilms in a Bubble Column Bioreactor

  • Choi, Yong-Bok;Lee, Jang-Young;Kim, Hak-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.41-47
    • /
    • 1995
  • Biodegradation of toluene in liquid effluent stream was carried out using biofilms of Pseudomonas putida formed on celite particles in the bubble column bioreactor. Silicon rubber tubing was installed at the bottom of the bioreactor and liquid toluene was circulated within the tubing. Toluene diffused out of the tube wall and was transferred into the culture broth where degradation by biofilms occurred. The operating variables affecting the formation of biofihns on celite particles were investigated in the bubble column bioreactor, and it was found that formation of bifilm is favored by high dilution rate and supply rate of carbon source which stimulate the growth of initially attached cells. Continuous biodegradation of toluene using biofilms was stablely conducted in the bioreactor for more than one month without any significant fluctuation, showing a removal efficiency higher than 95% at the toluene transfer rate of 1.2 g/L/h.

  • PDF

Inhanced Oxygen Supply of Xanthan Fermentations Using either Hydrogen Peroxide or Fluidized Particles in Tower Bioreators (탑형 생물반응기에서 과산화수소 또는 유동화 입자를 이용만 Xanthan 발효의 산소공급 향상)

  • 서일순
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.142-147
    • /
    • 2002
  • The decomposition of hydrogen peroxide was used for supplementing the oxygen during batch xanthan fermentations in a bubble column bioreactor in order to escape the oxygen transfer limitation that occurred at the high viscosity of culture broths. The xanthan production, however, was inhibited reversibly by dosing hydrogen peroxide. On the other hand, fluidized particles of glass beads with 8 mm diameter led to high gas-liquid oxygen transfer rates in three-phase fluidized beds, which resulted in higher space-time yields of the xanthan production compared to in the bubble column bioreactors.

Flow Characteristics in a Particle/Bubble Motion with Hybride PIV (Hybride PIV에 의한 단일입자/기포운동에 관한 연구)

  • Choi, Hae-Man;Terauchi, T.;Monji, H.;Matsui, G.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.7-12
    • /
    • 2002
  • As the first step to investigate the fundamental mechanism of a dispersed two-phase flow, we studied the detailed interactions between bubble or particle motion and flow around it. Experiments were carried out with a rising bubble or particle in stagnant water in a vertical pipe. Particles with different densities, and/or different shapes were used for comparison with a bubble. We adopted 3D-PTV (Three-Dimensional Particle Tracking Velocimetry) for measuring the bubble or particle motions, and PIV (Particle Image Velocimetry) for measuring the water flow simultaneously (Hybrid PIV). The experimental results showed that the oblate spheroidal solid particle rose along the longer axis direction at the point that the inclination of the longer axis reached the maximum, and the inclination direction changed after moving. The bubble moved to the direction that the spheroid's projected width grew up to the largest, and the minor axis of the oblate spheroidal body of the bubble was parallel to the moving direction. The trajectory of the center of the particle/bubble which was measured with 3D-PTV, was marked on the section (x-y) of the pipe. It exhibited the pattern of the particle/bubble motion.