• Title/Summary/Keyword: Bubble Cavitation

Search Result 92, Processing Time 0.023 seconds

Observation of Acoustic Characteristic Change in bubble cloud by Ultrasonic Cavitation (초음파 캐비테이션에 의한 기포군에서의 음향특성 변화관찰)

  • Noh, Si-Cheol;Kim, Ju-Young;Choi, Heung-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.351-356
    • /
    • 2012
  • Ultrasonic cavitation is a physical phenomenon that generates and collapses microbubbles in media (mainly fluids) under conditions of strong ultrasonic irradiation. In this study, changes in the ultrasonic acoustic characteristics of bubble clouds in relation to ultrasonic irradiation were observed by the quantitative evaluation of cavitation yields. Concave-type single ultrasonic transducers with center frequencies of 500 kHz and 1.1 MHz were used to produce cavitation, and 2.25 MHz interference ultrasonic waves that would traverse any bubble clouds generated were used to analyze the cavitation. The parameters used for the evaluation of cavitation yields (changes in the center frequency, attenuation characteristics, and the propagation time of penetrating waves) were analyzed in relation to the cavitation-generating conditions (irradiation intensity, excitation signal, and center frequency). On the basis of these results, correlations between the changes in the center frequency and irradiation intensity were identified. Although the correlation coefficient was low, notable changes were observed in the center frequency under certain irradiation conditions. Attenuation trends in the interference ultrasonic waves showed high correlations with all the irradiation conditions, and it was noted that these trends were not affected by the forms of cavitation generated. No differences in the propagation time were observed among different irradiation conditions. These findings suggest that bubble yields can be quantitatively evaluated effectively by evaluating the diverse irradiation conditions and that such a quantitative evaluation could be used to study the basic cavitation phenomenon occurring in high-intensity ultrasonic wave treatment.

Numerical investigation of blade tip vortex cavitation noise using Reynolds-averaged Navier-Stokes simulation and bubble dynamics model (Reynolds-averaged Navier-Stokes 해석과 기포동역학 모델을 이용한 날개 끝 와류 공동 소음의 수치적 고찰)

  • Ku, Garam;Cheong, Cheolung;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.77-86
    • /
    • 2020
  • In this study, the Eulerian/Lagrangian one-way coupling method is proposed to predict flow noise due to Blade-Tip Vortex Cavitation (BTVC). The proposed method consists of four sequential steps: flow field simulation using Computational Fluid Dynamics (CFD) techniques, reconstruction of wing-tip vortex using vortex model, generation of BTVC using bubble dynamics model and acoustic wave prediction using the acoustic analogy. Because the CFD prediction of tip vortex structure generally suffers from severe under-prediction of its strength along the steamwise direction due to the intrinsic numerical damping of CFD schemes and excessive turbulence intensity, the wing-tip vortex along the freestream direction is regenerated by using the vortex modeling. Then, the bubble dynamics model based on the Rayleigh-Plesset equation was employed to simulate the generation and variation of BTVC. Finally, the flow noise due to BTVC is predicted by modeling each of spherical bubbles as a monople source whose strength is proportional to the rate of time-variation of bubble volume. The validity of the proposed numerical methods is confirmed by comparing the predicted results with the measured data.

Process of pulsations of the spherical cavity in a liquid under the influence of ultrasonic vibrations

  • Kuznetsova, Elena L.;Starovoitov, Eduard I.;Vakhneev, Sergey;Kutina, Elena V.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.2
    • /
    • pp.95-102
    • /
    • 2022
  • The paper investigates the process of pulsation of a spherical cavity (bubble) in a liquid under the influence of a source of ultrasonic vibrations. The process of pulsation of a cavitation pocket in liquid is investigated. The Kirkwood-Bethe model was used to describe the motion. A numerical solution algorithm based on the Runge-Kutta-Felberg method of 4-5th order with adaptive selection of the integration step has been developed and implemented. It was revealed that if the initial bubble radius exceeds a certain value, then the bubble will perform several pulsations until the moment of collapse. The same applies to the case of exceeding the amplitude of ultrasonic vibrations of a certain value. The proposed algorithm makes it possible to fully describe the process of cavitation pulsations, to carry out comprehensive parametric studies and to evaluate the influence of various process parameters on the intensity of cavitation.

Cavitation Inception in Oil Hydraulic Pipeline (유압관로에서의 캐비테이션 초생)

  • Jung, Yong-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.17-17
    • /
    • 1987
  • The Cavitation inception in oil hydraulic pipeline was investigated experimentally and numerically. In the experiment, negative pressures below -1 MPa (absolute pressure) were measured, associated with the transient flows in oil hydraulic pipeline. These experimental results show that the common hydraulic oil in the experimental pipeline withstands large tensions. The growth of a spherical bubble in a infinite volume of viscous compressible fluid due to a stepwise pressure drop was investigated to obtain the critical bubble radius. The calculated value of the critical bubble radius corresponding to the negative pressure measured in the experiment is so small that the premised condition about the bubble shape in the analysis is unsatisfactory. The physical significance of this calculated result implies the fact that there hardly exist free bubbles which can act as cavitation nuclei in the experimental pipeline.

Numerical Analysis of Underwater Propeller Noise(Part 2 Cavitating Noise) (수중 프로펠러의 소음 예측에 관한 연구(Part2. 공동 소음))

  • 설한신;이수갑;표상우;서정천
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.33-46
    • /
    • 2004
  • The cavitating noise of underwater propeller is considered numerically in this study. The main purpose of this research is to analyze these noise sources from marine propeller. The approach for investigation is a potential based panel method coupled with acoustic analogy. To predict propeller sheet cavitation noise, the blade surface cavity is considered as a single valued pulsating volume of vapor attached to the blade surface. The time dependent cavity volume data are used for noise prediction. Furthermore, we analyze hydrofoil cavitation bubble behavior and noise using Eulerian/Lagrangian approach. Through this study, we can analyze dominant noise source of marine propeller and provide a basis for proper noise control strategies.

Controlled Hydrodynamic Cavitation-assisted Nanoreactor for Less Chemical-Higher Yield in Neutralization of Vegetable Oil Refining Process (Less Chemical-Higher Yield 탈산공정을 위한 수력 공동현상 유도 나노리엑터)

  • Kim, Ji-In
    • Food Science and Industry
    • /
    • v.51 no.2
    • /
    • pp.114-126
    • /
    • 2018
  • The production of high quality oil to meet new standard needs a 'next generation' innovative oil refining tool in paradigm shift. 'Nanoneutralization' using controlled hydrodynamic cavitation-assisted Nanoreactor is successfully being introduced and commercialized into edible oil industry and it plays a key driver for sustainable development of food processing. This emerging technology using bubble dynamics as a consequence of Bernoulli's principle by hydrodynamic cavitation in Venturi-designed multi-flow through cell is radically changing the conventionally chemical-oriented neutralization. Nanoneutralization derived by the creation of nanometer-sized bubbles formed through scientifically structured geometric channels under high pressure has been proven to improve mass transfer and reaction rate so substantially reduce the chemicals required for refined vegetable oil and to increase oil yield while even improving oil quality. More researches on science behind this revolutionary technology will help usto better understand the principle and process hence makes its potential applications expandable in extraction, refining and modification of fats and oils processing.

Cavitation Suppression Effects by the Modification of the Spectral Characteristics of High Intensity Focused Ultrasound (고강도 집속형 초음파의 주파수 성분 특성에 따른 공동 현상 억제 효과)

  • 최민주
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.68-77
    • /
    • 1999
  • The paper looked into the effects of the spectral properties (waveform) of the high intensity focused ultrasound on suppression of the ultrasonic cavitation. Three different types of ultrasound were considered in the study, which were sinusoidal (1 MHz, 5 MPa), frequency modulated (from 1 MHz to 6 MHz for 10 ㎲, 5 MPa), asymmetrically shocked (fundamental frequency 1 MHz, peak positive pressure 12 MPa, peak negative pressure -4 MPa). The temporal response of an air bubble in water initially 1 ㎛ in radius to each type of the ultrasound was predicted using Gilmore bubble dynamic model and Church's rectified gas diffusion equation. It was shown that the radially pulsating amplitude of the bubble was greatly reduced for the frequency modulated wave and was little decreased for the shock wave, compared to the case that the bubble was exposed to the sinusoidal wave. It is interesting that the bubble response to the frequency modulated wave remains similar when the frequency component of the modulated ultrasound is beyond the bubble resonant frequency 3 MHz. This implies that, although the ultrasound is modulated up to 3MHz rather than up to the present 6 MHz, it is likely to produce similar cavitation suppression effects. In practice, it means that a typical narrow band ultrasonic transducer can be taken to generate an appropriate frequency modulated ultrasound to reduce cavitation activity. The present study indicates that ultrasonic cavitation may be suppressed to some extent by a proper spectral modification of high intensity ultrasound.

  • PDF

Study on Quantitative Visualization Using Bubble Tracer in a Cavitation Tunnel (공동수조에서 추종입자로서 기포를 이용한 정량적 가시화에 대한 연구)

  • Paik, Bu-Geun;Kim, Kyung-Youl;Cho, Seong-Rak;Ahn, Jong-Woo
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.1
    • /
    • pp.22-29
    • /
    • 2007
  • In the present study, naturally generated bubbles were investigated to be sure if they could be adopted as the tracer for PIV techniques. The bubble can be grown from the nuclei melted in the water of tunnel and the size of bubbles is changed through the variation of tunnel pressure. Since the trace ability and appropriate size of tracer are so important for PIV techniques, the characteristics of bubbles as tracer are revealed in terms of trace ability and bubble size with the variation of flow speed and tunnel pressure in this study. In addition, PIV measurements of (low behind a rotating propeller are conducted to confirm the trace ability of bubbles even in a highly vortical flow.

Numerical Simulation of Cavitating Flows on a Foil by Using Bubble Size Distribution Model

  • Ito, Yutaka;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.216-227
    • /
    • 2004
  • A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.

  • PDF

Development of Wafer Cleaning Equipment Using Nano Bubble and Megasonic Ultrasound (나노 버블과 메가소닉 초음파를 이용한 반도체 웨이퍼 세정장치 개발)

  • Nohyu Kim;Sang Hoon Lee;Sang Yoon;Yong-Rae Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.66-71
    • /
    • 2023
  • This paper describes a hybrid cleaning method of silicon wafer combining nano-bubble and ultrasound to remove sub-micron particles and contaminants with minimal damage to the wafer surface. In the megasonic cleaning process of semiconductor manufacturing, the cavitation induced by ultrasound can oscillate and collapse violently often with re-entrant jet formation leading to surface damage. The smaller size of cavitation bubbles leads to more stable oscillations with more thermal and viscous damping, thus to less erosive surface cleaning. In this study, ultrasonic energy was applied to the wafer surface in the DI water to excite nano-bubbles at resonance to remove contaminant particles from the surface. A patented nano-bubble generator was developed for the generation of nano-bubbles with concentration of 1×109 bubbles/ml and nominal nano-bubble diameter of 150 nm. Ultrasonic nano-bubble technology improved a contaminant removal efficiency more than 97% for artificial nano-sized particles of alumina and Latex with significant reduction in cleaning time without damage to the wafer surface.

  • PDF