• Title/Summary/Keyword: Bubble Board

Search Result 17, Processing Time 0.321 seconds

Experimental study of bubble behaviors and CHF on printed circuit board (PCB) in saturated pool water at various inclination angles

  • Tanjung, Elvira F.;Alunda, Bernard O.;Lee, Yong Joong;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1068-1078
    • /
    • 2018
  • Experiments were performed to investigate bubble behaviors and pool boiling Critical Heat Flux (CHF) on a thin flat rectangular copper heater fabricated on Printed Circuit Board (PCB), at various inclination angles. The surface inclination angles were $0^{\circ}$, $45^{\circ}$, $90^{\circ}$, $135^{\circ}$, and $180^{\circ}$. Results showed the Onset of Nucleate Boiling (ONB) heat flux increased with increasing heater orientation from $0^{\circ}$ to $90^{\circ}$, while early ONB occurred when the heater faced downwards ($135^{\circ}$ and $180^{\circ}$). The nucleate boiling was observed to be unstable at low heat flux (1-21% of CHF) and changed into typical boiling when the heat flux was above 21% of CHF. The result shows the CHF decreased with increasing heater orientation from $0^{\circ}$ to $180^{\circ}$. In addition, the bubble departure diameter at the heater facing upwards ($0^{\circ}$, $45^{\circ}$, and $90^{\circ}$) was more prominent compared to that of the heater facing downward ($135^{\circ}$). The nucleation site density also observed increased with increasing heat flux. Moreover, the departed bubbles with larger size were observed to require a longer time to re-heat and activate new nucleation sites. These results proved that the ONB, CHF, and bubble dynamics were strongly dependent on the heater surface orientation.

Field Application of Surface Insulation Curing Method to Cold Weather Concreting (한중콘크리트의 현장 표면단열 양생공법 시공사례 연구)

  • Kim Jong-Back;Lim Choon-Goun;Han Min-Cheol;Kim Seoung-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.25-28
    • /
    • 2005
  • This study investigates the field application of surface insulation curing method, which combined double layer bubble sheet(DBS) and thick-curing-material(TCM) for cold weather concreting. According to the test, deck slab, curing only upper section with DBS and TCM, does not make big different temperature history with that, curing both upper and bottom section during daily average temperature 6.5t. It is concluded that combination of DBS and TCM in only upper section can be safely cured in early period of time during cold water concreting. The field test was carried out with this favourable data. The upper deck slab was insulated by combination of DBS and TCM, and the construction was surrounded by tent. in order to protect from outside wind. The test result shows that the lowest temperature of deck slab indicated 6$ ^{circ}C $. It demonstrated that this curing method can resist early frost and save construction cost in the side of management and saving labor cost, compared with previous method. In addition, the column specimen, combined both form and bubble board, exhibited favorable temperature history, due to internal hydration heat insulation effect.

  • PDF

Visualization Experiment for Nucleate Boiling Bubble Motion on a Horizontal Tube Heater Fabricated with Flexible Circuit Board (연성회로기판 기반 수평전열관 표면의 비등기포거동 가시화 실험 연구)

  • Kim, Jae Soon;Kim, Yu-Na;Park, Goon-Cherl;Cho, Hyoung Kyu
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.2
    • /
    • pp.52-60
    • /
    • 2016
  • The Passive Auxiliary Feedwater System(PAFS) is one of the advanced safety concepts adopted in the Advanced Power Reactor Plus(APR+). To validate the operational performance of the PAFS, detailed understanding of a boiling heat transfer on horizontal tube outside is of great importance. Especially, in the mechanistic boiling heat transfer model, it is important to visualize the phenomena but there are some limitations with conventional experimental approaches. In the present study, we devised a heater based on the Flexible Printed Circuit Board (FPCB) for a more comprehensive visualization and subsequently, a digital image processing technique for the bubble motion measurement was established. Using the measurement technique, important parameters of the nucleate boiling are analyzed.

A Problematic Bubble Detection Algorithm for Conformal Coated PCB Using Convolutional Neural Networks (합성곱 신경망을 이용한 컨포멀 코팅 PCB에 발생한 문제성 기포 검출 알고리즘)

  • Lee, Dong Hee;Cho, SungRyung;Jung, Kyeong-Hoon;Kang, Dong Wook
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.409-418
    • /
    • 2021
  • Conformal coating is a technology that protects PCB(Printed Circuit Board) and minimizes PCB failures. Since the defects in the coating are linked to failure of the PCB, the coating surface is examined for air bubbles to satisfy the successful conditions of the conformal coating. In this paper, we propose an algorithm for detecting problematic bubbles in high-risk groups by applying image signal processing. The algorithm consists of finding candidates for problematic bubbles and verifying candidates. Bubbles do not appear in visible light images, but can be visually distinguished from UV(Ultra Violet) light sources. In particular the center of the problematic bubble is dark in brightness and the border is high in brightness. In the paper, these brightness characteristics are called valley and mountain features, and the areas where both characteristics appear at the same time are candidates for problematic bubbles. However, it is necessary to verify candidates because there may be candidates who are not bubbles. In the candidate verification phase, we used convolutional neural network models, and ResNet performed best compared to other models. The algorithms presented in this paper showed the performance of precision 0.805, recall 0.763, and f1-score 0.767, and these results show sufficient potential for bubble test automation.

Laser Cutting of Flexible Printed Circuit Board in Liquid (연성인쇄회로기판의 액중 레이저 절단)

  • Kim, Teakgu;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.56-62
    • /
    • 2013
  • The laser cutting process which is flexible and rapid usually provides a better result in cutting of flexible printed circuit boards (FPCB). However, circuit-short by the re-deposition of debris from laser ablation or its heat affect zone (HAZ) on the cutting surfaces can be a problem. A laser cutting process of FPCB in the presence of liquid can minimize these negative effects. The temperature distribution of copper and polymer parts of FPCB was analyzed with numerical simulation and the experimental results were presented to evaluate this process. Generally, laser cutting under liquid has advantages of less re-deposition of carbides and less HAZ on the cutting edges. However, bubble generation and laser beam control through the liquid media should be considered carefully to obtain a successful result.

An Investigation of Lattice Boltzmann Multi-phase Model and it Application (래티스볼츠만 다상류 모델의 검토 및 응용)

  • Kang, Ho-Keun;Ahn, Soo-Whan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.269-270
    • /
    • 2006
  • A finite difference lattice Boltzmann model which allows us to simulate gas-liquid two-phase flows with large density difference, for instance, 800 times for air and water is considered. Two-particle model is used and the density difference is introduced by changing the acceleration according to the fluid density. Numerical measurement of surface tension agrees well with theoretical predictions. Simulations of two-phase phenomenon for phase-transition is carried out, showing applicability of the model for two-phase flows. The two-dimensional cavitating flow around a board set up in the fluid way is also simulated. As a result, it was confirmed that the FDLB method with two-particle model was effective in numerical simulation of cavitating flow and the bubble periodically grew up at the low pressure area behind the board, in which the fluid condition was influenced by the cavitation number.

  • PDF

A Study on Drainage Performance of Domestic Plastic Board Drains and Recovery of Discharge Capacity by Vacuum Effect (국내 PBD재의 배수성능과 진공효과에 의한 통수능력 향상에 관한 연구)

  • 박영목
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.39-54
    • /
    • 1997
  • Laboratory testings were carried out on plastic board drains (PBDs) using large scale test apparatus to evaluate the physical properties and the drainage performance. The test results reveal that the domestic products of PBDs are well compared with the foreign prod acts as far as the quality and drainage performance are concerned. It has also been confirmed that the discharge capacity decreases with time in such a way that the air bubbles are entrapped inside kinky PBDs and these air bubbles block the water flow through PBDs. It has been found that the vacuum pressure iseffectively applicable to recover the discharge capacity affected by the entrapped air bubbles.

  • PDF

Experimental Study on Underwater Transient Noise Generated by Water-Entry Impact (입수 충격 수중 순간 소음에 대한 실험적 연구)

  • Jung, Youngcheol;Seong, Woojae;Lee, Keunhwa;Kim, Hyoungrok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.10-20
    • /
    • 2014
  • To study the water-entry impact noise, on-board experiment using a small launcher firing various objects was performed in the Yellow Sea. As the launcher fires a cylindrical object from the ship vertically, generated noise is measured with a hydrophone on the starboard of Chung-hae, Marine surveyor. Three types of cylindrical objects, which have noses of flat-faced, conical, and hemisphere, were used during the experiment. The measured noise exhibits a time-dependency which can be divided into three phases: (1) initial impact phase, (2) open cavity flow phase, (3) cavity collapse and bubble oscillation phase. In most cases, the waveform of bubble oscillation phase is dominant rather than that of initial impact phase. Pinch-off time, where a cavity begins to collapse, occurs at 0.18 ~ 0.2 second and the average lasting time of bubble was 0.9 ~ 1.3 second. The energy of water-entry impact noise is focused in the frequency region lower than 100 Hz, and the generated noise is influenced by the nose shapes, object mass, and launching velocity. As a result, energy spectral density on the bubble frequency is higher in the order of flat-faced, conical, hemisphere nose, and the increase of initial energy raises the energy spectral density on the bubble frequency in the cylinder body of same shape. Finally, we compare the measurements with the simulated signals and spectrum based on the bubble explosion physics, and obtain satisfactory agreements between them.

Computational Fluid Analysis for Otter Boards ( 1 ) - Pattern of Fluid Flow Besides Otter Board - (전개판에 대한 수치해석 ( 1 ) - 전개판 주위에서의 유체흐름의 패턴 -)

  • Ko, Kwan-Soh;Kwon, Byeong-Guk;Ro, Ki-Deok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.4
    • /
    • pp.333-340
    • /
    • 1990
  • The authors carried out a visiualizational model test by the hydrogen bubble method to examine the pattern of the fluid flow besides the simple camber type and plane type otter board in circulation water channel. The experimental conditions are velocity of flow 0.05 and 0.1m/sec, angle of attack 0$^{\circ}$~45$^{\circ}$(5$^{\circ}$step). The results obtained are as follows: 1. In the case of the simple camber type otter board located angle of attack 25$^{\circ}$, vortex at the leading edge was geneated at 1/2 of chord length. 2. Size of the vortex generated in the trailing edge was about 2~3 times larger then that of the leading edge. 3. In the case of the simple camber type otter board located angle of attack 30$^{\circ}$, separation of stream-line at leading edge was generated at 1/3 of chord length. 4. Nearest stream-line in the back side of the simple camber type otter board was bent in the direction of otter board when the angle of attack was 25$^{\circ}$ and 30$^{\circ}$, and in the case of plane type otter board was expanded outside of the flow direction. 6. Area separated of the simple camber type otter board at the angle of attack 30$^{\circ}$ was smaller then that of plane type otter board. 7. Flow speed in the back side of the simple camber type otter board was about 1.4 times faster then that in the front side, and in the case of the plane otter board about 1.2 times faster.

  • PDF

IONOSPHERIC OBSERVATION USING KOREAN SATELLITES

  • MIN KYOUNG W.;LEE JAEJIN;PARK JAEHEUNG;KIM HEEJUN;LEE ENSANG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.109-115
    • /
    • 2003
  • We report the results of the ionospheric measurement obtained from the instruments on board the Korea Multi-Purpose Satellite - 1 (KOMPSAT-l). We observed a deep electron density trough in the nighttime equatorial ionosphere during the great magnetic storm on 15 July 2000. We attribute the phenomena to the up-lifted F-layer caused by the enhanced eastward electric field, while the spacecraft passed underneath the layer. We also present the results of our statistical study on the equatorial plasma bubble formation. We confirm the previous results regarding its seasonal and longitudinal dependence. In addition, we obtain new statistical results of the bubble temperature variations. The whole data set of measurement for more than a year is compared with the International Reference Ionosphere (IRI). It is seen that the features of the electron density and temperature along the magnetic equator are more prominent in the KOMPSAT-l observations than in the IRI model.