• Title/Summary/Keyword: Brushless motors

Search Result 226, Processing Time 0.024 seconds

ON-OFF' Current Control Method with Frequency Limiter and Operating Characteristics of Brushless DC Motors Using Resolver (리졸버를 사용한 브러쉬 없는 직류전동기의 운전특성과 주파수 제한기를 가진 'ON-OFF'전류제어 방식)

  • 홍성수;권봉환;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.9
    • /
    • pp.396-402
    • /
    • 1986
  • Although the structure of the brushless DC motor is similar to the one of the permanent magnet synchronous motor, its operating characteristics are the same as those of the permanent magnet DC motor. This is the reason that the commutators and brushes in the permanent magnet DC motor can be replaced by the power semiconductor devices and rotor position sensors for the brushless DC motor. In this paper, a current control method is presented to make a sinusoidal current waveform for constant torque generation and the operating characteristics of the brushless DC motor using the resolver as the rotor position sensor is also presented and experimented.

  • PDF

Speed control of vector-controlled BLDC motor using Neural Network (신경회로망을 이용한 벡터제어 BLDC 전동기의 속도제어)

  • Cho, Sung-Kuen;Han, Woo-Yong;Lee, Chang-Goo;Kim, Sung-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1126-1129
    • /
    • 2000
  • The equivalent transformation of a brushless DC motor into an separately exited DC motor has been possible with the vector control technique. Vector control is an effective technique for controlling variable speed drives of brushless DC motors. Conventional vector controllers, however, suffer from electrical machine parameter variations because these controllers depend on the parameters. This paper presents the vector control of brushless DC motor using a neural network. In the proposed method, a neural network is employed as on-line estimator of the nonlinear dynamic equations of brushless DC motor. The neural network based vector controller has the advantage of robustness against machine parameter variations as compared with conventional vector controller The simulation results using Matlab/Simulink verify the useful of the proposed method.

  • PDF

New Cooling System Design of BLDC Motor for Electric Vehicle Using Computation Fluid Dynamics Modeling

  • Vu, Duc Thuan;Hwang, Pyung
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.318-323
    • /
    • 2013
  • Overheating in electrical motors results in detrimental effects such as degradation of the insulation materials, demagnetization of magnets, increases in Joule losses, and decreases in motor efficiency and lifetime. Thus, it is important to find ways to dissipate heat from the motor and to keep the motor operating at its most efficient temperature. In this study, a new design to guide air flow through a given brushless direct current (BLDC) motor is developed and the design is analyzed, specifically by using computational fluid dynamics (CFD) simulations. The results showed that the temperature distribution in the three proposed models is lower than that in the original model, although the speed of the cooling fan in the original model reaches a very high value of $15{\times}10^3$ rpm. The results also showed that CFD can be effectively used to simulate the heat transfer of BLDC motors.

Sensitivity Analysis of Design Parameters for Reduction of Cogging Torque in Brushless DC Motors used for Automobile Part (자동차 부품용 BLDC 모터 내의 코깅 토크 저감을 위한 설계 변수의 민감도 해석)

  • 황상문
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.235-243
    • /
    • 1998
  • For motor operation at low speeds and loads, torque pulsation by the cogging torque is often a source of vibration and control difficulty. In this paper, the magnetic field of a motor is calculated by finite element method. The periodic cogging torque is determined using Maxwell stress method and time stepping method, and then decomposed using fourier series expansion, The purpose of this paper is to characterize design parameters on the cogging torque and to design a permanent magnet motor with a cogging torque less vulnerable to vibration, without sacrificing the motor performance. The design parameters include stator slot width, permanent magnet slot width, airgap length and magnetization direction. A new design with a less populated frequency spectrum of the cogging torque is proposed after characterizing individual effect of design parameters. Magnet pole edge shaping, by gradually increasing the cogging torque with reduced higher harmonics.

  • PDF

Filterless and Sensorless Commutation Method for BLDC Motors

  • Rad, Shahin Mahdiyoun;Azizian, Mohammad Reza
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1086-1098
    • /
    • 2018
  • This study presents a new sensorless commutation method for brushless direct current motors to replace Hall sensor signals with virtual Hall signals. The importance of the proposed method lies in the simultaneous elimination of the phase shifter and the low-pass filters, which makes the method simple and cost-effective. The method removes high ripple switching noises from motor terminals, thereby decreasing motor losses. The proposed method utilizes unfiltered line voltages with notches caused by current commutation. Hence, specific sign signals are defined to compensate for the effects of commutation noise. The proposed method is free from phase delay that originates from low-pass filters. The method directly produces virtual Hall signals, and thus, it can be interfaced with low-cost commercial commutation integrated circuits based on Hall sensors. Simulation and experimental results show the effectiveness and validity of the proposed method.

The optimum geometric design of stators for brush less DC linear motors (브러시없는 직류 선형 모터의 고정자 형상 최적 설계)

  • 최문석;김용일;이상락
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1173-1176
    • /
    • 1995
  • We design and analyze two type stators for brushless DC linear motors by the experiment and the computational analysis. For a U-shape stator, the maximum manetic flux density by the finite element method(FEM) is large than that by the experiment by 1.0~2.2%. The result by the FEM is so accurate that it can be applied to the geometric design for the optimization. To increase the maximum magnetic flux density, we suggest an improved stator and analyze it by the 3-D and 2-D models. The maximum magnetic flux density of the improved stator is large than that of the U-Shape stator by 2.7%. Considering the size of the improved stator and maximum magnetic flux density, we determine that the optimized thickness is 5mm for a given specification.

  • PDF

Analysis of Torque Characteristics of Brushless Motors (브러시리스 전동기의 토크특성 해석)

  • Lee, Sun-Kwon;Kim, Yong-Chul;Kang, Gyu-Hong;Hong, Jung-Pyo;Kim, Gyu-Tak;Chang, Ki-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.783-785
    • /
    • 2001
  • This paper presents the analysis method to predict the current waveform and instantaneous and average torque of permanent magnet brushless motors(BLDC). In this paper, the method to improve the torque characteristics of BLDC, especially phase advanced angle, is also presented. The validity of this method is verified by comparing to measured results.

  • PDF

A novel indirect rotor position sensing method to improve the performance of sensorless drive for brushless DC motors (브러시리스 직류 전동기 센서리스 드라이브의 성능 향상을 위한 새로운 회전자 위치 간접 검출 방식)

  • 조현민;이광운;박정배;여형기;유지윤
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.31-36
    • /
    • 1999
  • In this paper, a novel indirect rotor position sensing method is proposed to improve the performance of sensorless drive of brushless DC motors. Fast mode change to the sensorless operation is difficult in the existing indirect rotor position sensing methods because precise rotor position can not be obtained when an excessive input is applied to the drive during synchronous operation mode. To cope with this problem, the relationship between terminal voltage and back-emf waveform is analyzed in this paper, also a novel indirect position sensing method which can detect a precise rotor position at low speed range is proposed. The effectiveness of the proposed method is verified through the experimental results.

  • PDF

An Improvement of Torque Characteristics of Permanent Magnet Flat Type DC Brushless Motor (영구자석 편평형 DC 브러시레스 전동기의 토오크 특성 개선)

  • 임달호;임태빈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1153-1162
    • /
    • 1990
  • The torque ripple reduction method is studied to improve the speed fluctuation of permanent magnet flat type brushless DC motors. To reduce the torque ripple, this study developed the compensation method of the 5'th harmonics component of air gap flux waveform which pass through the driving coils. 1/2 inch VTR was considered. As the result of this study, we can reduce the torque ripple and the speed fluctuation of the capstan motor about 20% then before and we can obtain not only better characteristics of wow/flutter but more useful capstan motors which can be applied in the multi-function VTRs.

  • PDF

Sensorless Control of Brushless DC Motors based on TMS320F2812

  • Wu, Ziyu;Wang, Haifeng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • A new sensorless control strategy for brushless DC (BLDC) motors is proposed in this paper. This technique builds a rotor position-related flux function, which is independent of the speed. By observing the flux function, the information of rotor position and commutation can be obtained. As the function is not speed-related, this control process can be used in a wider range of speed and improves the motor's performance during startup. An experimental test bad based on TMS320F2812 has been built, and the experimental result indicates that the motor achieves a smooth starting-up and stable phase commutation with the proposed control strategy.