• Title/Summary/Keyword: Bruhat decomposition

Search Result 1, Processing Time 0.016 seconds

GAUSS SUMS FOR U(2n + 1,$q^2$)

  • Kim, Dae-San
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.871-894
    • /
    • 1997
  • For a lifted nontrivial additive character $\lambda'$ and a multiplicative character $\chi$ of the finite field with $q^2$ elements, the 'Gauss' sums $\Sigma\lambda'$(tr $\omega$) over $\omega$ $\in$ SU(2n + 1, $q^2$) and $\Sigma\chi$(det $\omega$)$\lambda'$(tr $\omega$) over $\omega$ $\in$ U(2n + 1, $q^2$) are considered. We show that the first sum is a polynomial in q with coefficients involving certain new exponential sums and that the second one is a polynomial in q with coefficients involving powers of the usual twisted Kloosterman sums and the average (over all multiplicative characters of order dividing q-1) of the usual Gauss sums. As a consequence we can determine certain 'generalized Kloosterman sum over nonsingular Hermitian matrices' which were previously determined by J. H. Hodges only in the case that one of the two arguments is zero.

  • PDF