• Title/Summary/Keyword: Brownmillerite

Search Result 13, Processing Time 0.022 seconds

Structural and Magnetic Properties of the Brownmillerite $Ca_2Al_xFe_{2-x}O_5$ System

  • 김귀야;로권선;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.934-938
    • /
    • 1995
  • A series of solid solutions in the Ca2AlxFe2-xO5 (x=0.00, 0.50, 0.66, 1.00 and 1.34) system with brownmillerite structure has been synthesized at 1100 ℃ under an atmospheric air pressure. The solid solutions are analysed by powder x-ray diffraction analysis, Mohr salt titration, thermal analysis, and Mossbauer spectroscopic analysis. The x-ray diffraction analysis assigns the compositions of x=0.00 and 0.50 to the space group Pcmn and those of x=0.66, 1.00, and 1.34 to the Ibm2. Mo&ssbauer spectra have shown the coordination state and disordering of Al3+ and Fe3+ ions. The substituting preference of Al3+ ions for the tetrahedral site decreases with increasing x value. Magnetic susceptibility of the system has been measured in the temperature range of 5 K to 900 K. The solid solutions of the compositions of x=0.00, 0.50 and 0.66 have shown a thermal hysteresis and the thermoremanent magnetization gap decreases with increasing x value in the above systems. However the compositions of x=1.00 and 1.34 do not show the hysteresis. The exchange integral is calculated from Fe3+ ion occupancy ratio. The integral decreases with x value and thus the magnetic transition temperature decreases with the increasing x value.

Crystallographic and Magnetic Properties of Brownmillerite Ca1-xSrxFeO2.5(x=0, 0.3, 0.5, 0.7, 1.0) (Brownmillerite Ca1-xSrxFeO2.5(x=0, 0.3, 0.5, 0.7, 1.0)의 결정학적 및 자기적 성질에 관한 연구)

  • Yoon, Sung-Hyun;Yang, Ju-Il;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.2
    • /
    • pp.76-82
    • /
    • 2004
  • Crystallographic and magnetic properties for Brownmillerite-type oxides $Ca_{1-x}$Sr$_{x}$FeO$_{2.5}$ (x = 0, 0.3, 0.5, 0.7, 1.0) were investigated using x-ray diffraction (XRD) and Mossbauer spectroscopy. Polycrystalline samples were prepared by conventional solid-state reaction method. Information on exact crystalline structures, lattice parameters, bond lengths and bond angles were obtained by refining their XRD profiles using a Rietveld method. The crystal structures were found to be all orthorhombic with space group Icmm (x = 0, 0.3) and Icmm (x = 0.5, 0.7, 1.0) The lattice parameters increased monotonically with increasing Sr concentration. Both the tetrahedral and the octahedral sites were considerably distorted and elongated along b-axis. While bond lengths and bond angles O-Fe-O tend to increase minutely with the increase of Sr content, bond angles Fe-O-Fe decreased accordingly. The Mossbauer spectra showed two sets of sharp sextets originating from ferric ions occupying the tetrahedral and the octahedral sites under the magnetic transition temperature T$_{N}$. Regardless of the compositions x, the electric quadrupole splittings were -0.3 mm/s and 0.4 mm/s for the octahedral and the tetrahedral site, respectively. Above T$_{N}$, the Mossbauer spectra showed the paramagnetic doublets whose electric quadrupole splittings were about 1.6 mm/s, irrespective of compositions x. T$_{N}$ was found to decrease monotonically with the increase of Sr concentration. Ratios of absorption area for the two sites were almost 1:1 up to as high as 0.95 T$_{N}$ for all x. The result of the Debye temperature indicated that the inter-atomic binding force for the Fe atoms in the tetrahedral site was stronger than that for the octahedral site.hedral site.

Analysis of Spin state of SrCoO2.5+x by DFT Calculation

  • Ryu, Ji-Hun;Im, Jin-Yeong
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.430-433
    • /
    • 2014
  • Perovskite 구조를 가진 코발트 산화물 $SrCoO_3$와 Brownmillerite 구조인 $SrCoO_{2.5}$의 electronic structure를 제1원리 계산을 통해 분석하였다. 이들의 magnetic structure를 계산하여 실험을 통해 알려진 값과 비교하였고, 각 구조에서 코발트 이온이 갖는 spin state를 확인할 수 있었다. 코발트 이온은 $SrCoO_3$에서 intermediate spin state(IS)를, $SrCoO_{2.5}$에서는 high spin state(HS)를 갖는데 이것이 lattice constant의 차이에 의한 것인지, 아니라면 차이의 원인은 무엇인지 density of state를 분석함으로써 알아보았다.

  • PDF

Nonstoichiometry and Magnetic Properties of the $Eu_{1-x}Sr_xCoO_{3-y}$ System ($Eu_{1-x}Sr_xCoO_{3-y}$계의 비화학량론과 자기적 특성)

  • Ryu, Kwang Hyun;Min, Ji Young;Yo, Chul Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.508-512
    • /
    • 1995
  • A series of samples in the $Eu_{1-x}Sr_xCoO_{3-y}$ system has been prepared by heating the proper amount of reactant mixture to 1150$^{\circ}C$ under an ambient atmosphere, and the solid solutions are identified by X-ray powder diffraction analysis. The crystal system of samples for the compositions of x=0.00 and 0.25 are found to be orthorhombic whose local symmetry is similiar to the distorted octahedra with orthoferrite type one, whereas those of x=0.50 and 0.75 to be the cubic system, and that of x=1.00 to the orthorhombic similiar to be the brownmillerite type. The amount of $Co^{4+}$ ion (${\tau}$ value) is maximized at the composition of x=0.50, and the oxygen vacancies increase with the x value. The nonstoichiometric chemical formula of each compound could be determined from the mole ratio of $Co^{4+}$ ion and oxygen vacancies. The $Co^{3+}$ ion located in octahedral site has spin transition from low spin to high spin states with increasing temperature. Therefore, the effective magnetic moment of each samples obtained from the magnetic measurement is increased with the increasing temperature. The $EuCoO_{3.00}$ has strong antiferromagnetic interaction between the neighboring $Co^{3+}$ ions through the intermediate oxygen ions. With the increasing ${\tau}$ value, the absolute {\theta}_p$ value is decreased by the ferromagnetic interaction of $Co^{3+}-O^2-Co^{4+}$ and thus the {\theta}_p$ has positive value at x=0.50.

  • PDF

Nonstoichiometry and Physical Properties of the Perovskite $CaGa_{1-x}Fe_xO_{3-y}$ System (페롭스카이트 $CaGa_{1-x}Fe_xO_{3-y}$계의 비화학량론과 물리적 성질)

  • Rho, Kwon Sun;Ryu, Kwang Hyun;Chang, Soon Ho;Yo, Chul Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.5
    • /
    • pp.295-301
    • /
    • 1996
  • A series of solid solutions of the $CaGa_1-xFexO_3-y$ system with the compositions of x=0.25, 0.50, 0.75, and 1.00 has been prepared at $1150^{\circ}C$ under an atmospheric air pressure. The structure, nonstoichiometric chemical formula, and the distribution of cations for the solid solutions are determined by X-ray diffraction analysis, Mohr salt titration, Mossbauer spectroscopic analysis. Their physical properties are discussed with electrical conductivity and magnetic measurements. The crystal system of all the compositions is a brownmillerite orthorhombic system from the X-ray diffraction analysis and the reduced lattice volume increases linearly with x value except that of the composition of x=0.25. All the solid solutions do not contain $Fe^{4+}$ ion and the mole number of oxygen vacancies or y value is 0.50 from Mohr salt analysis. The oxidation state of Fe ion, the coordination state, the structure change in the Brownmillerite-type structure, and the distribution of $Ga^{3+}$ and $Fe^{3+}$ ions are discussed with Mossbauer spectroscopic analysis. The electrical conductivity increases and activation energy decreases, as x value increases. The traditional semiconducting property of this system is described in terms of band theory. The compositions of x=0.50∼1.00 show a thermal magnetic hysteresis in the magnetic measurement with the cooling conditions, which is discussed in terms of the space group and Dzyaloshinsky-Moriya interaction.

  • PDF

Hydration properties of OPC with Synthesized Calcium Alumino Ferrite(CAF) (합성 Calcium Alumino Ferrite(CAF) 치환량에 따른 시멘트 수화 특성)

  • Woong-Geol Lee;Myong-Shin Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 2023
  • The cement is a typical CO2 emission industry. Manufacturing process improvements and increased use of alternative materials are needed to reduce energy consumption and CO2 emissions. This study confirmed the basic characteristics of cement hydration by sintering CAF at low temperature as a CO2 adsorbent material. For the hydration product of the synthetic CAF, crystal phase analysis, porosity, and structural images were confirmed, and the compressive strength was measured. The replacement rate of SCAF was 10, 20, and 100 %, and the compressive strength tended to decrease as the replacement rate increased. In addition, when the SCAF substitution rate is 100 %, the hydration products of the early age are calcium aluminum oxide hydrate (Ca3Al2O6 x H2O) and calcium iron hydroxide (Ca3Fe(OH)12), and at substitution rates of 10 and 20 %, CAF compounds other than general cement hydrates brownmillerite was observed. As for the porosity, the pore size increased and the porosity increased with the increase of the replacement ratio. As a result of this study, CAF manufactured by low-temperature sintering seems to be difficult to use alone and general curing for utilization as a CO2 adsorbing material.