• Title/Summary/Keyword: Brown cultivar

Search Result 215, Processing Time 0.022 seconds

A New High Qualilty Rice Variety with Lodging Resistance and Multiple Resistance to Diseases, "Donghaejinmi" (중만생 고품질 내도복 복합내병성 벼 신품종 "동해진미(東海珍味)")

  • Yeo, Un-Sang;Kim, Jeong-Il;Lee, Jeom-Sig;Park, No-Bong;Chang, Jae-Ki;Oh, Byeong-Geun;Kang, Jung-Hun;Kwak, Do-Yeon;Cho, Jun-Hyun;Lee, Jong-Hee;Kwon, Oh-Deog;Lee, Ji-Yoon;Nam, Min-Hee;Kim, Sang-Yeol;Ku, Yeon-Chung;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.288-291
    • /
    • 2009
  • A new commercial rice variety "Donghaejinmi" is a japonica rice (Oryza sativa L.) with lodging resistance and high grain quality. It has been developed by the rice breeding team of Yeongdeog Substation, National Institute of Crop Science (NICS), RDA. This variety was derived from a cross between "Milyang 64" as a resistance source of brown planthopper (Bph) and "Milyang 165" as grain quality source. The donor parent, "Milyang64" has been backcrossed three times with recurrent parent, "Milyang165" and selected by the pedigree breeding method. The pedigree of "Donghaejinmi", designated as "Yeongdeog 41" in 2003, was YR21259-B-B-68-1. It has a short culm length with 69 cm and medium-late growth time. This variety is resistant to stripe virus and moderately resistant to leaf blast disease with durable resistance. It also has tolerance to unfavorable environment such as cold, dried wind and storm. Milled rice kernel of "Donghaejinmi" is translucent, clear in chalkness and good at eating quality in panel test. The merit of this variety is high head rice ratio, which is essential element to produce an article of superior quality rice brand. The yield potential of "Donhaejinmi" in milled rice is about 6.05 MT/ha at ordinary fertilizer level of local adaptability test. This cultivar would be adaptable to Yeongnam inland plains and eastern costal area of Yeongnam province.

A New Mid-late Maturing Rice Cultivar with High-Quality and Multiple Resistance to Diseases and Insects, 'Dacheong' (벼 중만생 고품질 복합내병충성 신품종 '다청')

  • Kim, Woo-Jae;Ko, Jae-Kwon;Ko, Jong-Cheol;Nam, Jeong-Kwon;Ha, Ki-Yong;Shin, Mun-Sik;Kim, Yeong-Do;Kim, Bo-Kyeong;Kang, Hyun-Jung;Kim, Ki-Young;Baek, Man-Gee;Park, Hyun-Su;Baek, So-Hyeon;Shin, Woon-Chul;Kim, Kyeong-Hun;Choung, Jin-Il;Goo, Hwang-Hung;Kim, Jung-Gon
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.649-653
    • /
    • 2010
  • 'Dacheong', a new japonica rice variety developed from a cross between Iksan450 having a good eating-quality and multi-disease resistance, and YR21258-GH3 having insect resistance, was developed by the rice breeding team of Department of Rice and Winter Cereal Crop, NICS, RDA in 2008. This variety has about 125 days growth duration from transplanting to harvesting in west-southern coast, Honam and Youngnam plain of Korea. It has 87 cm culm length and tolerance to lodging. In reaction to biotic and abiotic stresses, it shows resistance to blast, bacterial blight pathogen races from $K_1\;to\;K_3$, stripe virus and brown plant hopper. The milled rice of 'Dacheong' exhibits translucent, relatively clear non-glutinous endosperm and medium short grain. It has slightly lower amylose content of 18.8% and lower protein content of 5.7%, and good palatability of cooked rice compared with Nampyeongbyeo. The milled rice yield performance of this variety is about 5.91 MT/ha in local adaptability test for three years. 'Dacheong' would be adaptable to west-southern coast, Honam and Youngnam plain of Korea.

High Quality and High Yielding Rice Variety 'Cheongdam' Adaptable to Direct Seeding (고품질 다수성 직파재배적성 신품종 '청담벼')

  • Choi, Im-Soo;Kang, Kyung-Ho;Jeong, O-Young;Jeong, Eung-Gi;Cho, Young-Chan;Kim, Yeon-Gyu;Kim, Myeong-Ki;O, Myeong-Gyu;Choi, In-Bea;Jeon, Yong-Hee;Won, Young-Jae;Shin, Young-Seoup;Oh, In-seok
    • Korean Journal of Breeding Science
    • /
    • v.43 no.6
    • /
    • pp.581-586
    • /
    • 2011
  • 'Cheongdam' is a japonica rice variety developed from a cross between SR19200-HB826-34, a line of good germination ability and shoot emergence at low temperature and Juanbyeo, good quality and direct-seeding adaptable cultivar by the rice breeding team of National Institute of Crop Science, RDA in 2006. This variety has 153 days of total growth duration from seeding to maturity in direct-seeding, and 160 days of growth duration from seeding to maturity in transplanting. This is erect plant type with culm length of 74 cm, thick culm, and green leaves. It has large panicle shape with 126 and 140 spikelets per panicle in direct-seeding and transplanting, respectively. Milled rice is transluscent and medium in grain size of non-glutinous endosperm. This variety is susceptible to leaf and neck blast, bacterial blight, stripe virus disease and brown planthopper. The yield potential of 'Cheongdam' is 5.84 MT/ha at ordinary transplanting culture and 5.62 MT/ha and 5.89 MT/ha at wet direct-seeding and dry direct-seeding cultures, respectively in the local adaptability test for three years. 'Cheongdam' would be adaptable to middle and southern plain of Korea for direct-seeding culture and transplanting rice culture.

Adaptable Tropical Japonica High quality New Rice Cultivar 'Japonica 6' (열대지역 적응 고품질 자포니카 벼 신품종 'Japonica 6')

  • Jeong, O-Young;Torollo, Gideon;Bombay, Maurene;Baek, Man-Kee;Ahn, Eok-keun;Hyun, Woong-Jo;Park, Hyun-Su;Jeong, Jong-Min;Cho, Jun-Hyeon;Lee, Jeong-Heui;Yeo, Un-Sang;Lee, Jeom-Sig;Jeong, Eung-Gi;Kim, Choon-Song;Suh, Jung-Pil;Kim, Bo-Kyeong;Lee, Jeom-Ho
    • Journal of the Korean Society of International Agriculture
    • /
    • v.31 no.3
    • /
    • pp.249-254
    • /
    • 2019
  • 'Japonica 6' is a japonica rice variety developed from a cross between 'MS11', the beginning variety adaptable to tropical region, and 'IR86743-28-1-4', an elite line of high yield and good plant type by a Korea(RDA)-IRRI cooperative breeding program at IRRI in 2017. The growth duration of 'Japonica 6' is 121 days from sowing to harvest. It is 10 days later than that of the check variety 'MS11'. The culm length of 'Japonica 6' is 70 cm, and 1,000-brown rice grain weight is 26.7 g. It has a shorter culm and a larger grain. size than that of MS11. 'Japonica 6' is moderately resistant to blast disease but susceptible to bacterial blight, tungro virus and plant hoppers. The milled rice recovery rate of 'Japonica 6' is improved than that of 'MS11'. The head rice rate of 'Japonica 6' is significantly higher than that of 'MS11'. Yield of 'Japonica 6' is averagely 3.59 MT/ha of milled rice in 5 areas of the Philippines. The 'Japonica 6' was registered in Philippines and would be adaptable to the diverse regions of tropical Asia (Registration No in Philippines. BPI-NSIC-2017-Rc 484SR).

Current Status and Perspectives in Varietal Improvement of Rice Cultivars for High-Quality and Value-Added Products (쌀 품질 고급화 및 고부가가치화를 위한 육종현황과 전망)

  • 최해춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.15-32
    • /
    • 2002
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s-1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great progress and success was obtained in development of high-quality japonica cultivars and quality evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice cultivars and special rices adaptable for food processing such as large kernel, chalky endosperm, aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer, Recently, new special rices such as extremely low-amylose dull or opaque non-glutinous endosperm mutants were developed. Also, a high-lysine rice variety was developed for higher nutritional utility. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and texture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak, hot paste and consistency viscosities of viscosities with year difference. The high-quality rice variety "IIpumbyeo" showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic microscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high probability of determination. The $\alpha$-amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were IIpumbyeo, Chucheongyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tonsil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, showed the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogradation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice breed. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large grain rices showed better suitability far fermentation and brewing. The glutinous rice were classified into nine different varietal groups based on various physicochemical and structural characteristics of endosperm. There was some close associations among these grain properties and large varietal difference in suitability to various traditional food processing. Our breeding efforts on improvement of rice quality for high palatability and processing utility or value-adding products in the future should focus on not only continuous enhancement of marketing and eating qualities but also the diversification in morphological, physicochemical and nutritional characteristics of rice grain suitable for processing various value-added rice foods.ice foods.