• Title/Summary/Keyword: Brown Preadipocytes

Search Result 13, Processing Time 0.02 seconds

Protein tyrosine phosphatase profiling studies during brown adipogenic differentiation of mouse primary brown preadipocytes

  • Choi, Hye-Ryung;Kim, Won Kon;Park, Anna;Jung, Hyeyun;Han, Baek Soo;Lee, Sang Chul;Bae, Kwang-Hee
    • BMB Reports
    • /
    • v.46 no.11
    • /
    • pp.539-543
    • /
    • 2013
  • There is a correlation between obesity and the amount of brown adipose tissue; however, the molecular mechanism of brown adipogenic differentiation has not been as extensively studied. In this study, we performed a protein tyrosine phosphatase (PTP) profiling analysis during the brown adipogenic differentiation of mouse primary brown preadipocytes. Several PTPs, including PTPRF, PTPRZ, and DUSP12 showing differential expression patterns were identified. In the case of DUSP12, the expression level is dramatically downregulated during brown adipogenesis. The ectopic expression of DUSP12 using a retroviral expression system induces the suppression of adipogenic differentiation, whereas a catalytic inactive DUSP12 mutant showed no effect on differentiation. These results suggest that DUSP12 is involved in brown adipogenic differentiation and may be used as a target protein for the treatment or prevention of obesity by the regulation of brown adipogenic differentiation.

Brown preadipocyte transplantation locally ameliorates obesity

  • Takaya, Kento;Matsuda, Naruhito;Asou, Toru;Kishi, Kazuo
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.440-447
    • /
    • 2021
  • Background Brown adipose tissue (BAT) is a potential target for anti-obesity treatments. Previous studies have shown that BAT activation causes an acute metabolic boost and reduces adiposity. Furthermore, BAT and BAT-derived cell transplantation reportedly help treat obesity by regulating glucose and fatty acid metabolism. However, since BAT transplantation leads to whole-body weight loss, we speculated that earlier approaches cause a generalized and unnecessary fat tissue loss, including in breast and hip tissues. Methods We transplanted white adipose tissue-derived or BAT-derived preadipocytes prepared from C57BL/6 mice into one side of the inguinal fat pads of an obese mouse model (db/db mice) to examine whether it would cause fat loss at the peri-transplant site (n=5 each). The same volume of phosphate-buffered saline was injected as a control on the other side. Six weeks after transplantation, the inguinal fat pad was excised and weighed. We also measured the concentrations of glucose, triglycerides, fatty acids, and total cholesterol in the peripheral blood. Results BAT-derived preadipocytes showed abundant mitochondria and high levels of mitochondrial membrane uncoupling protein 1 expression, both in vivo and in vitro, with a remarkable reduction in weight of the inguinal fat pad after transplantation (0.17±0.12 g, P=0.043). Only free fatty acid levels tended to decrease in the BAT-transplanted group, but the difference was not significant (P=0.11). Conclusions Our results suggest that brown adipocytes drive fat degradation around the transplantation site. Thus, local transplantation of BAT-derived preadipocytes may be useful for treating obesity, as well as in cosmetic treatments.

Roles of Protein Histidine Phosphatase 1 (PHPT1) in Brown Adipocyte Differentiation

  • Kang, Joo Ae;Kang, Hyun Sup;Bae, Kwang-Hee;Lee, Sang Chul;Oh, Kyoung-Jin;Kim, Won Kon
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.306-312
    • /
    • 2020
  • Despite the importance of brown adipocytes as a therapeutic target for the prevention and treatment of obesity, the molecular mechanism underlying brown adipocyte differentiation is not fully understood. In particular, the role of post-translational modifications in brown adipocyte differentiation has not been extensively studied. Histidine phosphorylation is increasingly recognized an important process for protein post-translational modifications. In this study, we show that histidine phosphorylation patterns change during brown adipocyte differentiation. In addition, the expression level of protein histidine phosphatase 1 (PHPT1), a major mammalian phosphohistidine phosphatase, is reduced rapidly at the early phase of differentiation and recovers at the later phase. During white adipocyte differentiation of 3T3-L1 preadipocytes, however, the expression level of PHPT1 do not significantly change. Knockdown of PHPT1 promotes brown adipocyte differentiation, whereas ectopic expression of PHPT1 suppresses brown adipocyte differentiation. These results collectively suggest that histidine phosphorylation is closely linked to brown adipocyte differentiation and could be a therapeutic target for obesity and related metabolic diseases.

Analysis of UCP1 Expression in Rainbow Trout Gonadal Cell Line RTG-2 Indicates its Marginal Response to Adipogenic Inducers Compared to Mammalian Cell Lines

  • Sang-Eun Nam;Young-Joo Yun;Jae-Sung Rhee;Hyoung Sook Park
    • Journal of Marine Life Science
    • /
    • v.8 no.2
    • /
    • pp.186-189
    • /
    • 2023
  • Uncoupling protein 1 (UCP1) is a unique mitochondrial membranous protein expressed in brown adipose tissue (BAT) in mammals. While its expression in response to cold temperatures and adipogenic inducers is well-characterized in mammals and human infants, the molecular characterization and expression of UCP1 in fish remain unexplored. To address this gap, we analyzed UCP1 expression in response to adipogenic inducers in a fish cell line, rainbow trout gonadal cells (RTG-2), and compared it with UCP1 expression in three mammalian preadipocytes, 3T3-L1, T37i, and WT1 exposed to the Peroxisome proliferator-activated receptor gamma (PPARγ) agonists, rosiglitazone (Rosi). In mammalian preadipocytes, UCP1 protein was highly expressed by Rosi, with an induction of adipogenesis observed in a time-dependent manner. This suggests that UCP1 plays a significant role in adipogenesis in mammals. However, RTG-2 cells showed no response to adipogenic inducers and exhibited only marginal expressions of UCP1. These results imply that RTG-2 cells may lack crucial responsive mechanisms to adipogenic signals or that the adipogenic response is regulated by other mechanisms. Further studies are needed to confirm these phenomena in fish preadipocytes when an appropriate cell line is established in future research.

Effect of Dictyopteris divaricata Extracts on Adipogenesis in 3T3-L1 Preadipocytes (미끈뼈대그물말(Dictyopteris divaricata) 추출물의 항비만 효과)

  • Chul Hwan Kim;Seok-Chun Ko;Hyun-Soo Kim;Gun-Woo Oh;Ji-Yul Kim;Kyung Woo Kim;Jeong Min Lee;Myeong-Seok Lee;Yun Gyeong Park;Gyeong Lee;Jae-Young Je;Jung Hye Won;Young Jun Kim;Dae-Sung Lee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.59-66
    • /
    • 2023
  • Dictyopteris divaricata, a type of marine brown algae, has been studied for its various biological properties, including anti-inflammatory, antidiabetic, and whitening effects. However, its potential antiobesity effects have not been extensively explored. This study aimed to examine the impact of D. divaricata ethanol extract (DDE) on adipocyte differentiation and adipogenesis using 3T3-L1 preadipocytes. Our results showed that when 3T3-L1 preadipocytes were treated with noncytotoxic concentrations of DDE there was a concentration-dependent decrease in fat accumulation rate and triglycerid production compared with the control. Furthermore, DDE significantly reduced the expression of transcription factors (PPARγ, C/EBPα, and SREBP-1) and fatty acid transport protein (FABP4), which are crucial for 3T3-L1 preadipocyte differentiation. These findings suggest that DDE may exhibit antiobesity effects by suppressing the expression of lipogenic transcription factors and fatty acid transport proteins. Therefore, DDE holds potential as a therapeutic agent for obesity.

Effect of Solid-State Fermented Brown Rice Extracts on 3T3-L1 Adipocyte Differentiation

  • Su Bin Ji;Chae Hun Ra
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.926-933
    • /
    • 2023
  • Aspergillus oryzae KCCM 11372 was used to enhance the production of β-glucan using humidity control strategies. Under conditions of 60% humidity, solid-state fermentation (SSF) increased the yields of enzymes (amylase and protease), fungal biomass (ergosterol), and β-glucan. The maximum concentrations obtained were 14800.58 U/g at 72 h, 1068.14 U/g at 120 h, 1.42 mg/g at 72 h, and 12.0% (w/w) at 72 h, respectively. Moreover, the β-glucan containing fermented brown rice (β-glucan-FBR) extracts at concentrations of 25-300 ㎍/ml was considered noncytotoxic to 3T3-L1 preadipocytes. We then studied the inhibitory effects of the extracts on fat droplet formation in 3T3-L1 cells. As a result, 300 ㎍/ml of β-glucan-FBR extracts showed a high inhibition of 38.88% in lipid accumulation. Further, these extracts inhibited adipogenesis in the 3T3-L1 adipocytes by decreasing the expression of C/EBPα, PPARγ, aP2, and GLUT4 genes.

Effects of Cell-Cell Contact on Vibration Loading-induced Browning of 3T3-L1 Preadipocytes (진동 자극을 통한 3T3-L1 지방전구세포의 갈변화에서 세포 간 접촉의 영향)

  • Heejin Noh;Yong Chan Jung;Gayoung Kim;Eunyeong Moon;Eun Mi Lee;Chi Hyun Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.43-48
    • /
    • 2024
  • The prevalence of obesity and its complications is steadily increasing worldwide. It is essential to understand cellular level metabolism and microenvironment to treat diseases related to lipid metabolism. Mechanical loading can activate signaling pathway by stimulating cells, especially vibration loading known to inhibit adipogenesis, so it has been studied as a treatment for obesity. Also, vibration loading can affect the inside of the human body non-invasively. Another clue to reducing adipose tissue is browning, which means that white adipocytes changes to brown adipocyte. In this study, we design and developed a device that that can control cell-cell contact, and vibration simulation device. Using these two devices, we investigated responses of cells to vibration loading. Protein expression associated with browning and adipogenesis were analyzed. In conclusion, vibration loading can be transmitted through cell contact and loading applied to the cells can induce browning and inhibit adipogenesis of preadipocytes. These results suggest the possibility that vibrations could be a treatment for obesity.

Antioxidant and Anti-Adipogenic Effects of Colored and Brown Rice Extracts Depending on Cultivars (품종별 유색미 및 현미 추출물의 항산화 활성 및 지방축적 억제 효과)

  • Kim, Min Young;Park, Hye Young;Lee, Yu-Young;Lee, Byong Won;Kim, Mi Hyang;Lee, Jin Young;Lee, Jong Hee;Kang, Moon-Suk;Koo, Bon Cheol;Kim, Hyun-Joo
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.2
    • /
    • pp.149-158
    • /
    • 2020
  • The purpose of this study was to investigate antioxidant characteristics and anti-adipogenic effects of colored rice and brown rice extracts in 3T3-L1 adipocyte depending on cultivar (Josaengheugchal, Heugjinmi, Hongjinju, Geongganghongmi, Seolgaeng, Milyang 320, Sindongjin, Baegjinju). Colored rice and brown rice was extracted with 100% ethanol, followed by the analysis of polyphenol, flavonoid, anthocyanin, antioxidant, and anti-adipogenic activity. Total polyphenol and flavonoid content ranged from 6.86~314.08 mg GAE/g and 1.47~56.88 mg CE/g the highest total polyphenol and flavonoid content was observed in Heugjinmi cultivar. Anthocyanin composition was analyzed by HPLC, cyanidin-3-gluoside and peonidin-3-glucoside was found in black rice including Josaengheugchal and Heugjinmi. Also, the ABTS and DPPH radical scavenging activity of colored rice cultivars was higher than that of brown rice cultivars, the highest ABTS radical scavenging activity also was observed in Heugjinmi (128.20 mg TE/g). The anti-adipogenic effects of colored rice and brown rice extracts on differentiation of 3T3-L1 preadipocytes evaluated that extracts of Heugjinmi cultivar significantly reduced intracellular lipid accumulation. These results provide valuable information for the use of Korean colored rice cultivar as a functional food materials relative to anti-obesity.

Enzymatic Production and Adipocyte Differentiation Inhibition of Low-Molecular-Weight-Alginate (저분자 알긴산의 효소적 생산과 지방세포 분화 억제 효과)

  • Park, Mi-Ji;Kim, Yeon-Hee;Kim, Gun-Do;Nam, Soo-Wan
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1393-1398
    • /
    • 2015
  • In this study, we investigated the extraction condition of alginate from Laminaria japonica, the enzymatic degradation of the extracted alginate, and the inhibitory activity of the degraded alginate on the differentiation of 3T3-L1 preadipocytes. The optimal conditions for the efficient extraction, precipitation, and recovery of alginate from the brown seaweed L. japonica were 1% for Na2CO3 concentration, 80℃ for extraction temperature, and ethanol for precipitation solvent. In the enzymatic reaction for the production of low-molecular-weight alginate (LMWA) by using alginate lyase from Flavobacterium sp., the initial concentration of Laminaria alginate was 3%. The low-molecular-weight degree from alginate was independent with the enzyme concentration, and the optimal concentration of alginate lyase was found to be 5 unit/ml. Through the enzymatic reaction with 5 unit/ml of alginate lyase at 37℃ for 3 hr, the viscosity and molecular weight of LMWA were 4.5 cp and 307 kDa, respectively. Treatment with LMWA significantly suppressed the accumulation of lipid droplet and triglyceride in 3T3-L1 preadipocytes with a dose-dependent manner. Therefore, it seems that LMWA treatment could inhibit the differentiation of 3T3-L1 preadipocytes. These results indicate that LMWA or the degraded alginate produced by alginate lyase enzyme can be useful for the development of anti-obesity biosubstances.

Effects of Ethanol Extract of Sargassum horneri on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes (괭생이모자반 에탄올 추출물이 3T3-L1 지방전구세포의 분화 및 adipogenesis에 미치는 영향)

  • Kwon, Da Hye;Choi, Yung Hyun;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.209-214
    • /
    • 2019
  • Sargassum horneri (Turner) C. Agardh is a marine brown algae widely distributed in the North Pacific Ocean. It is known for its anti-inflammatory and anti-atopic effects. In this study, we determined the effects of ethanol extract of Sargassum horneri (Turner) C. Agardh (EESH) on anti-obesity activities in 3T3-L1 preadipocytes. Our results indicated that treatment with EESH decreased the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in lipid droplet content observed by oil red O staining. The concentrations of cellular triglycerides were also reduced in 3T3-L1 cells after treatment with EESH. Triglyceride content was inhibited by 13%, 16%, and 23% after treatment with 250, 500, and $1,000{\mu}g/ml$ of EESH in 3T3-L1 cells, respectively. Western blotting analysis showed that EESH suppressed adipogenic transcription factor expression in a dose dependent manner. Specifically, it suppressed cytidine-cytidine-adinosine-adenosine-thymidine (CCAAT) /enhancer binding proteins $(C/EBP){\alpha}$, $C/EBP{\beta}$ and peroxisome proliferator-activated receptor $(PPAR){\gamma}$. This indicated that EESH could control the expression of adipogenic transcription factors and inhibit the differentiation of adipocytes. Taken together, these findings demonstrated that EESH showed anti-obesity effects and could have potential uses in the field of nutraceuticals.