• Title/Summary/Keyword: Bronze

Search Result 569, Processing Time 0.026 seconds

Geomorphological Development and Paleoenvironment around Sinsong-ri, Gobuk-myeon, Seosan-si, South Korea (서산시 고북면 신송리 유적 일대의 지형 발달과 고환경 분석)

  • Hwang, Sang-Ill;Kim, Hyo-Seon;Yoon, Soon-Ock
    • The Korean Journal of Quaternary Research
    • /
    • v.24 no.2
    • /
    • pp.23-34
    • /
    • 2010
  • The purpose of this study is to clarify the characteristics of geomorphic surfaces and investigate their geomorphological development at Sinsong-ri archaeological sites by the classification of geomorphic surfaces. The sedimentary facies of trench 1, 2 and 3 were identified and pollen analysis was performed at site 3. The geomorphic surfaces are classified by hillslope, valley plain, alluvial fan and river terrace. Most of the study area is located on low hillsides and valley plains are connected with tidal flats extended from small river valley. Also, alluvial fans are distributed over the piedmont and narrow, long river terraces are developed downstream along the Sojeong-stream flowing between valley plain and hillsides. River valleys were deeply eroded during the Last Glacial Maximum (LGM) periods, responded to the lowest sea level among the hillslopes and valley plains are formed during the Holocene. The sedimentary facies are identified composed of basal gravel layers with coarse gravels and sands, relatively thick culture layer of the Bronze Age and thin layer during the early Iron Age in upper part study area. Thus, land uses during the Bronze Age people was performed more intensively comparing to the early Iron Age by deforestation for habitation.

  • PDF

Material Characteristics and Archaeological Scientific Implication of the Bronze Age Potteries from the Cheonan-Asan Area, Korea (천안-아산 지역 청동기시대 무문토기의 재료학적 특성과 고고과학적 의미)

  • Lee, Chan Hee;Cho, Seon Yeong;Eo, Eon Il;Kim, Ran Hee
    • Journal of Conservation Science
    • /
    • v.31 no.1
    • /
    • pp.47-64
    • /
    • 2015
  • The excavated potteries and raw clays of the Bronze Age from the archaeological sites in the Cheonan-Asan area were studied on material scientific characteristics and homogeneity. Under the microscope, grainsize of the tempers in the potteries were distributed from less than 1mm to 10mm. Microtexture of the potteries showed various shapes and sizes of pores. In addition to the main minerals such as quartz, feldspar, mica, hornblende, chlorite and talc were found from the X-ray diffraction analysis of potteries, while talc was not found in the raw clay. Therefore, it was considered as an artificially added mineral. Firing temperature of the potteries, which did not contain chlorite, are assumed that they were baked below $850^{\circ}C$. On the other hand, the potteries which had mica and talc, are assumed that they were fired below $900^{\circ}C$. The geochemical characteristics of the potteries and raw clays showed very similar patterns, that means the potteries were produced by using the raw clay sources from each site.

Study on the Structural Analysis and Characterization of Hunting Pit in the Bronze Age - Focusing on Relics in Ulsan and Chuncheon Area - (청동기시대 함정유구의 구조분석과 성격 검토 - 울산, 춘천 지역 유적을 중심으로 -)

  • Choi, Su-hyoung
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.2
    • /
    • pp.166-185
    • /
    • 2013
  • After analyzing the location, arrangement, inner structure, and form of the hunting pit in the Bronze Age, this paper sets up three types and talks about types of hunting pits. After analyzing the types of the hunting pit, three types of hunting pits are derived: mountain district - large group's arrangement - long oval - I II type(A), mountain district - arrangement in a line - oval - I type(B), flat area - arrangement in a line - oval - I III type(C). Literature, the ways in hunting pits, the purpose of the installations, and the characters are studied and compared with those of the anthropological cases. Even though hunting pits of types A and B are constructed to hide and get protein and bone of animals for breeding, there are differences in the ways in hunting and characters. Type of A seems to be constructed only for occupation that is the standardized hunting method on a small works. However, type B is the chasing method to hunt as a group and it has various purposes including main occupation. For example, it is for improving the war skills by practicing the hunting strategies and cooperating with the people. In addition, it is for getting a sacrifice for god. The type C hunting pit is estimated that it plays a role to protect themselves from invasion. It's inferred that there are many purposes for military defense and protection of people or animals within the village. It is the reason why the construction is spread in hunting pit including various purposes in the Bronze age that originates in social and economical specialization like the increase in agricultural productivity and appearance of a chief.

Firing Condition, Source Area and Quantitative Analysis of Plain Coarse Pottery from the Unjeonri Bronze Age Relic Site, Cheonan, Korea (천안 운전리 청동기 유적지에서 출토된 무문토기의 정량분석, 산지 및 소성조건)

  • Choi, Seok-Won;Lee, Chan-Hee;Oh, Kuy-Jin;Lee, Hyo-Min;Lee, Myeong-Seong
    • Korean Journal of Heritage: History & Science
    • /
    • v.36
    • /
    • pp.267-297
    • /
    • 2003
  • The plain coarse pottery from the Unjeonri Bronze Age relic sites in the Cheonan, Korea were studied on the basis of clay mineralogy, geochemistry and archaegeological interpretations. For the research, the potteries are utilized at the analysis for 6 pieces of plain coarse potteries. Color of the these potteries are mainly light brown, partly shows the yellowish brown to reddish brown. The interior, surface and inside of the pottery appear as different colors in any cases. Original source materials making the Unjeonri potteries are used of mainly sandy clay soil with extreme coarse grained irregularly quartz and feldspar. The magnetic susceptibility of the Unjeonri pottery range from 0.20 to 1.20. And the Unjeonri soil's magnetic susceptibility agree almost with 0.20 to 1.30. In the same magnetization of soil and pottery, the results revealed that the Unjeonri soil and low material of pottery are same produced by identical source materials. The Unjeonri potteries and soil are very similar patterns with all characteristics of soil mineralogy, geochemical evolution trend. The result seems to be same relationships between the behavior and enrichment patterns on the basis of a compatible and a incompatible elements. Consequently, the Unjeonri potteries suggest that made the soil to be distributed in the circumstance of the relic sites as the raw material are high in a greater part. In the Unjeonri soil, the kaolinite is common occurred minerals. However, in the Unjeonri pottery, the kaolinite was not detected in all broken pieces. The kaolinite was presumed to destroy crystal structure during the firing processes of over $550^{\circ}C$. The quartz is phase transition from ${\alpha}$-quartz to ${\beta}$-quartz at $573^{\circ}C$, but the Unjeonri pottery did not investigated any phase transition evidences of quartz. The chorite was detected within the mostly potteries and soils. As the results, the Unjeonri potteries can be interpreted by not experiencing a firing temperature over $800^{\circ}C$. The colloidal and cementing materials between the quartz and low materials during the heating did not exist in the internal part of the potteries. An any secondary compounds by heating does not appear within the crack to happen during the dry of the pottery. The hyphae group are kept as it is with the root tissue of an organic matters to live in the swampy land. In the syntheses of all results, the general firing condition to bake and make the Unjeonri pottery is presumed from $550^{\circ}C$ to $800^{\circ}C$. However, the firing condition making the Unjeonri pottery can be different firing temperature partially in one pottery. Even, the some part of the pottery does not take a direct influence on the fire.

The Structural and Material Characteristics of Bogjeon Chongtong from the Joseon Dynasty (조선시대 복전총통의 구조와 재료적 특징)

  • Lee Jihyun;Huh Ilkwon;Moon Jieun;Shin Sujung
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.101-126
    • /
    • 2023
  • Bogjeon chongtong, a military firearm from the Joseon Dynasty, remains undocumented with extant ones only discovered relatively recently. This study examined the structural and material characteristics of the bogjeon chongtong by comparing the specifications, shapes, inscriptions, and components of 12 pieces of bogjeon chongtong, which have not been described in detail to date. Bogjeon chongtong has certain set properties in terms of its specifications and shapes. This study also estimated the number of projectiles fired at once by comparing the specifications and records. In terms of design, the handle slot has an outline engraved in relief along with the name of the artifact. The inscribed outline is the most notable feature of the bogjeon chongtong that is not seen in other chongtong artifacts. Therefore, this study analyzed the inscription techniques used in the production process. The main ingredients of bogjeon chongtong are copper and tin, with a tin content of 6wt%. It was confirmed that this is highly similar to the average composition of bronze gunpowder weapons of the Joseon Dynasty as identified in prior research, and that it is also similar to the bronze gunmetal of medieval Europe. These conclusions were drawn in consideration of the material properties required for gunpowder weapons, which allows the inference that the materials used for firearms were selected by prioritizing functionality based on the alloy ratio.