• Title/Summary/Keyword: Bronchoalveolar lavage(BAL)

Search Result 114, Processing Time 0.034 seconds

The Role of Protein Kinase C in Acute Lung Injury Induced by Endotoxin (내독소에 의한 급성폐손상에서 Protein Kinase C의 역할)

  • Kim, Yong-Hoon;Moon, Seung-Hyug;Kee, Sin-Young;Ju, Jae-Hak;Park, Tae-Eung;Im, Keon-Il;Cheong, Seung-Whan;Kim, Hyeon-Tae;Park, Choon-Sik;Jin, Byung-Won
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.2
    • /
    • pp.349-359
    • /
    • 1997
  • Background : The signal pathways and their precise roles for acute respiratory distress syndrome caused by endotoxin (ETX) has not been established. Since there has been several in vitro experiments suggesting that activation of protein kinase C (PKC) pathway may be responsible for endotoxin-induced inflammatory reaction, we performed in vivo experiments in the rats with the hypothesis that PKC-inhibition can effectively prevent endotoxin-induced acute lung injury. Methods : We studied the role of PKC in ETX-induced ALI using PKC inhibitor (staurosporine, STP) in the rat Specific pathogen free male Sprague-Dawley weighted from 165 to 270g were used for the study. Animals were divided into the normal control (NC)-, vehicle control (VC)-, ETX-, PMA (phorbolmyristateacetate)-, STP+PMA-, and STP+ETX-group. PMA (50mg/kg) or ETX (7mg/kg) was instilled through polyethylen catheter after aseptic tracheostomy with and without STP (0.2mg/kg)-pretreatment STP was injected via tail vein 30min before intratracheal injection (IT) of PMA or ETX. Bronchoalveolar lavage (BAL) was done 3-or 6-hrs after IT of PMA or ETX respectively, to measure protein concentration, total and differential cell counts. Results : The results were as follows. The protein concentrations in BALF in the PMA- and ETX-group were very higher than that of VC-group (p<0.001). When animals were pretreated with STP, the %reduction of the protein concentration in BALF was $64.8{\pm}8.5$ and $30.4{\pm}2.5%$ in the STP+PMA- and STP+ETX-group, respectively (p = 0.028). There was no difference in the total cell counts between the PMA-and VC-group (p = 0.26). However the ETX-group showed markedly increased total cell counts as compared to the VC- (p = 0.003) and PMA-group (p = 0.0027), respectively. The total cell counts in BALF were not changed after pretreatment with STP compared to the PMA- (p = 0.22) and ETX-group (p = 0.46). The percentage of PMN, but not alveolar macrophage, was significantly elevated in the PMA-, and ETX-group. Especially in the ETX-group, the percentage of PMN was 17 times higher than that of PMA (p < 0.001). The differential cell counts was not different between the PMA and STP+PMA On the contrary the STP+ETX-group showed decreased percentage of PMN (p = 0.016). There was no significant relationship between the protein concentration and the total or differential cell counts in each group. Conclusion : Pretreatment with PKC-inhibitor (staurosporine) partially but significantly inhibited ETX-induced ALI.

  • PDF

Effect of the Inhibition of PLA2 on Oxidative Lung Injury Induced by $Interleukin-1{\alpha}$

  • Lee, Young-Man;Cho, Hyun-Gug;Park, Yoon-Yub;Kim, Jong-Ki;Lee, Yoon-Jeong;Park, Won-Hark;Kim, Teo-An
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.5
    • /
    • pp.617-628
    • /
    • 1998
  • In order to understand the pathogenetic mechanism of adult respiratory distress syndrome (ARDS), the role of phospholipase A2 (PLA2) in association with oxidative stress was investigated in rats. $Interleukin-1{\alpha}\;(IL-1,\;50\;{\mu}g/rat)$ was used to induce acute lung injury by neutrophilic respiratory burst. Five hours after IL-1 insufflation into trachea, microvascular integrity was disrupted, and protein leakage into the alveolar lumen was followed. An infiltration of neutrophils was clearly observed after IL-1 treatment. It was the origin of the generation of oxygen radicals causing oxidative stress in the lung. IL-1 increased tumor necrosis factor (TNF) and cytokine-induced neutrophil chemoattractant (CINC) in the bronchoalveolar lavage fluid, but mepacrine, a PLA2 inhibitor, did not change the levels of these cytokines. Although IL-1 increased PLA2 activity time-dependently, mepacrine inhibited the activity almost completely. Activation of PLA2 elevated leukotriene C4 and B4 (LTC4 and LTB4), and 6-keto-prostaglandin $F2{\alpha}\;(6-keto-PGF2{\alpha})$ was consumed completely by respiratory burst induced by IL-1. Mepacrine did not alter these changes in the contents of lipid mediators. To estimate the functional changes of alveolar barrier during the oxidative stress, quantitative changes of pulmonary surfactant, activity of gamma glutamyltransferase (GGT), and ultrastructural changes were examined. IL-1 increased the level of phospholipid in the bronchoalveolar lavage (BAL) fluid, which seemed to be caused by abnormal, pathological release of lamellar bodies into the alveolar lumen. Mepacrine recovered the amount of surfactant up to control level. IL-1 decreased GGT activity, while mepacrine restored it. In ultrastructural study, when treated with IL-1, marked necroses of endothelial cells and type II pneumocytes were observed, while mepacrine inhibited these pathological changes. In histochemical electron microscopy, increased generation of oxidants was identified around neutrophils and in the cytoplasm of type II pneumocytes. Mepacrine reduced the generation of oxidants in the tissue produced by neutrophilic respiratory burst. In immunoelectron microscopic study, PLA2 was identified in the cytoplasm of the type II pneumocytes after IL-1 treatment, but mepacrine diminished PLA2 particles in the cytoplasm of the type II pneumocyte. Based on these experimental results, it is suggested that PLA2 plays a pivotal role in inducing acute lung injury mediated by IL-1 through the oxidative stress by neutrophils. By causing endothelial damage, functional changes of pulmonary surfactant and alveolar type I pneumocyte, oxidative stress disrupts microvascular integrity and alveolar barrier.

  • PDF

Endotoxin-induced Acute Lung Injury is Mediated by PAF Produced via Remodelling of Lyso PAF in the Lungs

  • Lee, Young-Man;Kim, Teo-An
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.219-226
    • /
    • 2000
  • In order to elucidate the role of platelet activating factor (PAF) in the acute lung injury induced by endotoxin (ETX), activities of phospholipase A2, lyso PAF acetyltransferase and oxidative stress by neutrophilic respiratory burst were probed in the present study. To induce acute lung injury, $100\;{\mu}g$ of E.coli ETX (type 0127; B8) was instilled directly into the tracheae of Sprague-Dawley rats. Five hours after the ETX instillation, induction of acute lung injury was confirmed by lung leak index and protein contents in the bronchoalveolar lavage (BAL) fluid. At the same time, lung phospholipase A2 (PLA2) activity and expression of group I and II secretory type PLA2 were examined. In these acutely injured rats, ketotifen fumarate, known as lyso PAF acetyltransferase inhibitor and mepacrine were administered to examine the role of PAF in the pathogenesis of the acute lung injury. To know the effect of the ETX in the synthesis of the PAF in the lungs, lyso PAF acetyltransferase activity and PAF content in the lungs were measured after treatments of ETX, ketotifen fumarate and mepacrine. In addition, the role of neutrophils causing the oxidative stress after ETX was examined by measuring lung myeloperoxidase (MPO) and enumerating neutrophils in the BAL fluid. To confirm the oxidative stress in the lungs, pulmonary contents of malondialdehyde (MDA) were measured. After instillation of the ETX in the lungs, lung leak index increased dramatically (p<0.001), whereas mepacrine and ketotifen decreased the lung leak index significantly (p<0.001). Lung PLA2 activity also increased (p<0.001) after ETX treatment compared with control, which was reversed by mepacrine and ketotifen (p<0.001). In the examination of expression of group I and II secretory PLA2, mRNA synthesis of the group II PLA2 was enhanced by ETX treatment, whereas ketotifen and WEB 2086, the PAF receptor antagonist, decreased the expression. The activity of the lysoPAF acetyltransferase increased (p<0.001) after treatment of ETX, which implies the increased synthesis of PAF by the remodelling of lysoPAF in the lungs. Consequently, the contents of the PAF in the lungs were increased by ETX compared with control (p<0.001), while mepacrine (p<0.001) and ketotifen (p<0.01) decreased the synthesis of the PAF in the lungs of ETX treated rats. The infiltration of the neutrophils was confirmed by measuring and enumerating lung MPO and the neutrophils in the BAL fluid respectively. Compared with control, ETX increased lung MPO and number of neutrophils in BAL significantly (p<0.001) whereas mepacrine and ketotifen decrerased number of neutrophils (p<0.001) and MPO (p<0.05, p<0.001, respectively). The lung MDA contents were also increased (p<0.001) by ETX treatment, but treatment with mepacrine (p<0.001) and ketotifen (p<0.01) decreased the lung MDA contents. Collectively, we conclude that ETX increases PLA2 activity, and that the subsequently increased production of PAF was ensued by the remodelling of the lyso PAF resulting in tissue injury by means of oxidative stress in the lungs.

  • PDF

An Appreciation of Functional Role of Macrophage in the Acute Lung Injury in the Neutropenic Rat. (호중구 감소증을 보이는 백서의 급성폐손상에서 대식세포의 기능적 역할)

  • Kim, Yong-Hoon;Ki, Sin-Young;Im, Keon-Il;Moon, Seung-Hyug;Cheong, Seung-Whan;Kim, Hyeon-Tae;Uh, Soo-Taek;Park, Choon-Sik;Jin, Byung-Won
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.2
    • /
    • pp.379-390
    • /
    • 1997
  • Background : It has long been suggested that neutrophils and their products are implicated as the central mediators of the acute lung injuries. Contrary to the dominant role of neutrophils in ARDS, many cases of ARDS has occurred in the setting of severe neutropenia without pulmonary neutrophil infiltration. Therefore it is certain that effector cell(s) other than neutrophil play an important role in the pathogenesis of ARDS. This experiment was performed to define the mechanism of ARDS in the setting of neutropenia, 1) by comparing the severity of endotoxin-induced lung injury, 2) by measurement of hydrogen peroxide production and cytokine concentration in the bronchoalveolar lavage cells and fluids obtained from different rats with and without cyclophosphamide-pretreatment. Method : The male Sprague-Dawleys were divided into the normal control (NC)-, endotoxin (ETX)-, and cyclophosphamide (CPA)-group in which neutropenia was induced by injecting cyclophosphamide intraperitoneally. Acute lung injury was evoked by injecting lipopolysaccharide (LPS) into a tail vein. The bronchoalveolar lavage (BAL) was performed at 3 and 6 hour after administration of LPS to measure the change of cell counts and concentrations of protein and cytokines, tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6). Hydrogen peroxide (HPO) production from BAL cells was measured at 6 hour after LPS administration by phenol red microassay with and without zymosan stimulation. Results : The results were as follows. A change of leukocyte counts in the peripheral blood after treatment with CPA : More than 95% of total leukocytes and neutrophils were reduced after CPA administration, resulting in severe neutropenia. A change of BAL cells : In the ETX-group, the number of total cells (p < 0.01) and of macrophage and neutrophil (p < 0.05) were increased at 3 and 6 hour after LPS administration compared to those of NC-group. In the CPA-group, the number of total leukocyte and macrophage were not changed after LPS administration, but neutrophil counts were significantly reduced and it took part in less than 0.1% of total BAL cells (p < 0.01 vs NC-group). BAL cells in this group were almost all macrophages (99.7%). A change of protein concentration in the BALF : In the ETX-group, protein concentration was increased at 3 hour and was more increased at 6 hour after LPS administration (p < 0.05 and < 0.01 vs NC-group, respectively). In the CPA-group, it was also significantly elevated at 3 hour after LPS administration (p < 0.05 vs NC-group), but the value was statistically not different from that of ETX-group. The value measured at 6 hour after LPS administration in the CPA-group became lower than that of ETX-group (p < 0.05), but showed still a higher value compared to that of NC-group (p < 0.05). A change of cytokine concentration in the BALF : TNF -alpha and IL-6 were elevated in the ETX - and CPA-group compared to those of NC-group at both time intervals. There was no statistical difference in the values of both cytokines between the ETX- and CPA-groups. Measurement of hydrogen peroxide production from BAL cells : There was no intergroup difference of HPO production from resting cells. HPO production after incubation with opsonized zymosan was significantly elevated in all groups. The percent increment of HPO production was highest in the ETX-group (89.0%, p < 0.0008 vs NC-group), and was 42.85 in the CPA-group (p = 0.003 vs NC-group ). Conclusion : Acute lung injury in the setting of neutropenia might be caused by functional activation of resident alveolar macrophages.

  • PDF

PCR in diagnosis of pneumocystosis of rats (중합반응을 이용한 흰쥐 페포자충증의 진단)

  • 홍성태
    • Parasites, Hosts and Diseases
    • /
    • v.34 no.3
    • /
    • pp.191-196
    • /
    • 1996
  • Polymerase chain reaction (PCR) is a powerful technique to detect scanty amount of DNA from living organisms. The present study intended to develope specific primers for PCR diagnosis of pneumocystosis and to evaluate diagnostic efficacy by preparation of template DNAs from invasive BAk fluid and also to screen serum or blood as a non-invasive specimen. Albino rats of Wistar or Fischer strains were experimentally infected by Pneumocwstis ccrinii. Extracted DNAs or cell Iysates of their blood, bronchoalveolar lavage fluid, and lung homogenate were used as the tenlplate DNA. Primers were synthetic oligonucleotides among 16s rDNA sequences. All of the primer combinations gave PCR products, but the primer pair of #24 and #27 gave best quality product of 666 bp. The sensitivity of PCR with Iysates of BAk fluid was 57.7% but it increased to 84.6% with extracted DNAs. None of BAL Iysate or DNA was positive among 13 microscopically negatives. The serum DNAs were positive only in 2 cases out of 20 morphologically positive rats. DNAs of human, rat, other parasites, yeast, and microorganisms were negative. The findings suggest that the present primers are specific but simple Iysate of BAL fluid is not sensitive. PCR may be used as a routine diagnostic method of pneumocystosis if simple and rapid preparation of non-invasive clinical specimens are available.

  • PDF

PAF Contributes to Intestinal Ischemia/Reperfusion-Induced Acute Lung Injury through Neutrophilic Oxidative Stress

  • Lee, Young-Man;Park, Yoon-Yub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.405-414
    • /
    • 1999
  • The role of platelet-activating factor (PAF) was investigated in intestinal ischemia/reperfusion (I/R) induced acute lung injury associated with oxidative stress. To induce acute lung injury following intestinal I/R, superior mesenteric arteries were clamped with bulldog clamp for 60 min prior to the 120 min reperfusion in Sprague-Dawley rats. Acute lung injury by intestinal I/R was confirmed by the measurement of lung leak index and protein content in bronchoalveolar lavage (BAL) fluid. Lung leak and protein content in BAL fluid were increased after intestinal I/R, but decreased by WEB 2086, the PAF receptor antagonist. Furthermore, the pulmonary accumulation of neutrophils was evaluated by the measurement of lung myeloperoxidase (MPO) activity and the number of neutrophils in the BAL fluid. Lung MPO activity and the number of neutrophils were increased (p<0.001) by intestinal I/R and decreased by WEB 2086 significantly. To confirm the oxidative stress induced by neutrophilic respiratory burst, gamma glutamyl transferase (GGT) activity was measured. Lung GGT activity was significantly elevated after intestinal I/R (p<0.001) but decreased to the control level by WEB 2086. On the basis of these experimental results, phospholipase $A_2\;(PLA_2),$ lysoPAF acetyltransferase activity and PAF contents were measured to verify whether PAF is the causative humoral factor to cause neutrophilic chemotaxis and oxidative stress in the lung following intestinal I/R. Intestinal I/R greatly elevated $PLA_2$ activity in the lung as well as intestine (p<0.001), whereas WEB 2086 decreased $PLA_2$ activity significantly (p<0.001) in both organs. LysoPAF acetyltransferase activity, the PAF remodelling enzyme, in the lung and intestine was increased significantly (p<0.05) also by intestinal I/R. Accordingly, the productions of PAF in the lung and intestine were increased (p<0.001) after intestinal I/R compared with sham rats. The level of PAF in plasma was also increased (p<0.05) following intestinal I/R. In cytochemical electron microscopy, the generation of hydrogen peroxide was increased after intestinal I/R in the lung and intestine, but decreased by treatment of WEB 2086 in the lung as well as intestine. Collectively, these experimental results indicate that PAF is the humoral mediator to cause acute inflammatory lung injury induced by intestinal I/R.

  • PDF

Severe Hemorrhage Induced Expressions of Ferritin and Heme Oxygenase-1 In Leukocytes (출혈로 인한 폐 염증세포에서의 ferritin과 heme oxygenase-1의 발현)

  • Kwon, Jung-Wan;Park, Yoon-Yub
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.878-885
    • /
    • 2009
  • Serum ferritin levels are elevated in subjects with acute lung injury (ALI), and abnormalities in plasma and lung iron chemistry have also been demonstrated in ALI and acute respiratory distress syndrome (ARDS). Stress-inducible heme oxygenase-1 (HO-1), as well as ferritin, had shown anti-inflammatory actions. Biomarkers for early detection in patients who are likely to develop ARDS would give several therapeutic chances to the patients. In order to verify the predictability in severe hemorrhage-induced ALI in rats, we measured serum ferritin and HO-1 concentrations before and after hemorrhage. Severe hemorrhages significantly increased the number of leukocytes in bronchoalveolar lavage (BAL) fluid and lung tissue myeloperoxidase activity. Both serum ferritin and HO-1 levels increased following hemorrhage, but ferritin levels were elevated earlier than HO-1. In BAL cell immunohistochemical studies, ferritin and HO-1 expressions increased after hemorrhage and localized in the cytoplasm of leukocytes. These findings suggest that inflammatory leukocytes in BAL fluid can secrete ferritin and HO-1, and serum ferritin levels might be more valid factor in predicting ARDS than HO-1 levels in hemorrhage-induced ALI.

The Inflammatory Response in Mouse Lung after Acute Sulfur Dioxide Exposure (급성 아황산가스 폭로후 흰쥐의 폐에 유발된 염증반응에 관한 연구)

  • Chin, Young-Joo;Park, Nam-Gyu;Lee, Hyeon-Suk;Kim, Dae-Soo;Earm, Jae-Ho;Cho, Myeong-Chan;Yoon, Sei-Jin;Jeong, Hwa-Sook;Song, Hyung-Geun;Sung, Ro-Hyun;Lee, Sang-Do
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.4
    • /
    • pp.328-338
    • /
    • 1994
  • Background: Effect of sulfur dioxide($SO_2$) exposure on airway is well known but little about the effect of $SO_2$ exposure on lung parenchyme. This study is to determine if short tenn exposure to $SO_2$ in concentration commonly found in industrialized environment cause potentially harmful effect on the lung parenchyme, and to evaluate the exposure time-response relationship between short tenn exposure to $SO_2$ and the inflammatory response in mouse lung. Method: 5ppm $SO_2$ gas was used and 48 mice were grouped into control(10), 30(9), 60(11), and 120 minute exposure(18) group. In each group, bronchoalveolar lavage(BAL) was done immediately after and at 1,2,3 days after exposure. Histological examination was performed in control and 120 minute exposure group. Results: 1) Cell response in bronchoalveolar lavage fluid. In 30 and 60 minute exposure group, compared to the control group, lymphocyte count has significantly increased(p<0.05) at 1 day after exposure but did not differ at 2 days after exposure. In 120 minute exposure group, also compared to the control group, there was significant increase in total cell, macrophage, and lymphocyte count at 1 day after exposure, (p<0.05) which lasted for 2 days but did not significantly differ at 3 days after exposure. 2) Histological findings in 120 minute exposure group. In the airway, mild epithelial cell damage and ciliary loss were noted but there was no evidence of inflammatory cell infiltration. Interstitial inflammatory infiltration was noted at 1 day after exposure, which lasted for 3 days after exposure and there was no evidence of edema or fibrosis in the interstitium Conclusions: These data indicate potentially noxious effect of $SO_2$ on the lung parenchyme as well as the airway at exposure level that are regarded as relatively safe, and the duration of injury depends on the exposure time.

  • PDF

Effectiveness of Citri Reticulatae Viride Pericarpium in the Bronchial Asthma Animal Model: Assessment on the vascular endothelial growth factor (VEGF) (천식 동물모델에서 청피의 치료 효과 -혈관내피성장요인의 측정을 통하여-)

  • Lee Hai Ja
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1475-1478
    • /
    • 2003
  • Purpose : We hope to evaluate the effectiveness of Citri Reticulatae Viride Pericarpium for the bronchial asthma using assesment on the vascular endothelial growth factor after Citri Reticulatae Viride Pericarpium was intravenously administered OVA-sensitized and -challenged mice. Material and methods: Eleven female mice, 8-10 weeks of age and free of murine specific pathogens, were used. Of the eleven mice, one mouse was not sensitized and ten mice were sensitized by intraperitoneal injection of OVA. Of the sensitized mice, three mice didn't administrate Citri Reticulatae Viride Pericarpium and seven mice administrated Citri Reticulatae Viride Pericarpium. Mice were sensitized on days 1 and 14 by intraperitoneal injection of 20 ㎍ OVA. On days 21, 22, and 23 after the initial sensitization, the mice were challenged for 30 minutes with an aerosol of 1 % OVA in saline. Citri Reticulatae Viride Pericarpium administered 200mg/kg in the tail of the mouse, one time per day, for 7 days, beginning 14 days after first sensitization. Bronchoalveolar lavage was performed 72 hours after the last challenge, and level of VEGF in the BAL fluid were measured by Western blot analysis. Results: Western blot analysis revealed that VEGF protein levels were increased in the all three mice which were challenge with OVA without administered Chung-pi compared the normal mouse. However, in the groups of the administered Chung-pi, the VEGF protein level markedly decreased in six of seven mice. Conclusion : Citri Reticulatae Viride Pericarpium might be effect the treatment of the bronchial asthma as a inhibition of the VEGF.

Antiviral and Anti-Inflammatory Activities of Pochonin D, a Heat Shock Protein 90 Inhibitor, against Rhinovirus Infection

  • Song, Jae-Hyoung;Shim, Aeri;Kim, Yeon-Jeong;Ahn, Jae-Hee;Kwon, Bo-Eun;Pham, Thuy Trang;Lee, Jongkook;Chang, Sun-Young;Ko, Hyun-Jeong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.576-583
    • /
    • 2018
  • Human rhinoviruses (HRV) are one of the major causes of common cold in humans and are also associated with acute asthma and bronchial illness. Heat-shock protein 90 (Hsp90), a molecular chaperone, is an important host factor for the replication of single-strand RNA viruses. In the current study, we examined the effect of the Hsp90 inhibitor pochonin D, in vitro and in vivo, using a murine model of human rhinovirus type 1B (HRV1B) infection. Our data suggested that Hsp90 inhibition significantly reduced the inflammatory cytokine production and lung damage caused by HRV1B infection. The viral titer was significantly lowered in HRV1B-infected lungs and in Hela cells upon treatment with pochonin D. Infiltration of innate immune cells including granulocytes and monocytes was also reduced in the bronchoalveolar lavage (BAL) by pochonin D treatment after HRV1B infection. Histological analysis of the lung and respiratory tract showed that pochonin D protected the mice from HRV1B infection. Collectively, our results suggest that the Hsp90 inhibitor, pochonin D, could be an attractive antiviral therapeutic for treating HRV infection.