• Title/Summary/Keyword: Broccoli sprouts

Search Result 40, Processing Time 0.023 seconds

Germination Rate and Microbial Safety during Cultivation of Disinfected Seeds (새싹 종자 소독 여부에 따른 발아율과 재배기간별 미생물 오염도)

  • Park, Eun-Jung;Kwon, Joong-Ho;Lee, Yeon-Kyung
    • Food Science and Preservation
    • /
    • v.16 no.2
    • /
    • pp.292-298
    • /
    • 2009
  • This study investigated the microbial safeties and germination rates of five domestic sprout species(alfalfa, broccoli, clover, red cabbage, and red radish) grown from disinfected seeds. The 48 h germination rates of all seeds were over 90%, regardless of treatment. Seed total plate count(TPC) and coliform levels were reduced significantly(p<0.05) by treatment with 20,000 ppm calcium hypochlorite solution at $25^{\circ}C$ for 15 min, following FDA recommendations. However, after germination, all sprouts regardless of treatment exhibited bacterial counts of $10^7-10^8CFU/g$. Listeria monocytogenes was detected at $10^3-10^4CFU/g$ on germinated non-disinfected clover seeds at days 1, 2, and 5. In conclusion, although sprout germination from disinfected seeds potentially permits the growth of sprouts with lower pathogen counts, there were no significant differences in TPC or coliform levels between sprouts grown from disinfected seeds and control sprouts. Further work is needed to improve the microbial safety of cultivated sprouts and to find optimal conditions for seed germination.

Effect of LED as Light Quality on the Germination, Growth and Physiological Activities of Broccoli Sprouts (LED 광질이 브로콜리 새싹의 발아, 생장 및 생리활성에 미치는 영향)

  • Cho, Ja-Yong;Son, Dong-Mo;Kim, Jong-Man;Seo, Beom-Seok;Yang, Seung-Yul;Bae, Jong-Hyang;Heo, Buk-Gu
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.116-123
    • /
    • 2008
  • This study was carried out to investigate into the effect of light-emitting diode (LED) for the light quality as a light source on the broccoli seed germination and the physiological activity of vegetable sprouts. We have also germinated seeds of the broccoli and applied LED as a light quality such as blue, green, red, white, yellow and red + blue color lights to their sprouts for 14 hours and kept dark for 10 hours at the temperature of $25^{\circ}C$ (day)/$18^{\circ}C$ (night). Broccoli sprouts were extracted by methanol and their physiological activities were examined. All broccoli seeds were germinated at 3 days after seeding regardless of the light color. Total sprout fresh weight were mostly became highest by 0.389g (10 plants) at 8 days after seeding when their sprouts were grown under blue color light. Total phenol compound contents in broccoli sprouts were extremely increased by $83.0\;mg{\cdot}L^{-1}$ under the white light, and total flavonoid contents were most much more by $72.6\;mg{\cdot}L^{-1}$ under the blue light. DPPH radical scavenging activity at $2,000\;mg{\cdot}L^{-1}$ were most highest by 93.5% in broccoli sprouts grown under the white light. Nitrite radical scavenging activity at the concentration of $500\;mg{\cdot}L^{-1}$ in sprout extracts were the most increased by 66.9% under the yellow light, and tyrosinase inhibition activity at $2,000\;mg{\cdot}L^{-1}$ in sprout extracts were by 14.5% under red light.

Improving the Food Safety of Seed Sprouts Through Irradiation Treatment

  • Waje, Catherine;Kwon, Joong-Ho
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.171-176
    • /
    • 2007
  • Fresh sprouts such as alfalfa, mung bean, radish, broccoli, and soybean sprouts have become very popular due do their high nutritional value. However, there have been several outbreaks of illness in the last few years that have been attributed to sprout consumption. A number of methods have been used to improve the safety of seed sprouts. One promising technology is the use of ionizing radiation treatment. Irradiation with doses up to 8 kGy has been approved in the USA to control microbial pathogens in seeds intended for sprout production. This review focuses on the potential use of ionizing radiation in reducing the pathogen levels in seed sprouts. The effects of irradiation on seed germination and the nutritional quality of the sprouts are discussed.

Anti-inflammatory properties of broccoli sprout extract in a lipopolysaccharide-induced testicular dysfunction

  • Hyun-Jung Park
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Brassica oleracea var. italica (broccoli) is a type of cabbage that contains vitamins, minerals, and phytochemicals. Consequently, it is used as a potential nutraceutical source for improving human health by reducing oxidative stress and inflammatory responses. Here, the effects of broccoli sprout extract (BSE) on the inflammatory response were investigated through lipopolysaccharide (LPS)-induced inflammatory mouse models. First, we found that the BSE obviously reduce NO production in RAW 264.7 cells in response to LPS stimulation in in vitro study. Pretreatment with BSE administration improved sperm motility and testicular cell survivability in LPS-induced endotoxemic mice. Additionally, BSE treatment decreased the levels of the pro-inflammatory cytokines TNF-a, IL-1β, and IL-6, and COX-2 in testis of LPS-induced endotoxemic mice models. In conclusion, BSE could be a potential nutraceutical for preventing the excessive immune related infertility.

Anti-inflammatory and Anti-cancer Effects of Agricultural Produce Grown with Organic Germanium-enriched Water (유기 게르마늄 농축수로 재배한 농산물의 항염 및 함암효과)

  • Lee, Myeong-Seon
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.1
    • /
    • pp.103-109
    • /
    • 2021
  • The study was conducted to identify the anti-inflammatory and anti-cancer effects in sprouts of mouse-eyed bean (Rhynchosia nulubilis), ginseng (Panax ginseng), perilla (Perilla frutescens), broccoli (Brassica oleracea var. italica), and lettuce (Lactuca sativa) grown with organic germanium concentrate. Western blot analysis was performed to assess the anti-inflammatory activity of the extract. All extracts exhibited noticeable anti-oxidant activity, indicating a significant correlation between the germanium content and anti-oxidant activity (p<0.05). In particular, rat-eyed bean sprouts with the highest germanium content showed significant anti-inflammatory activity (p<0.05) by significantly inhibiting the expression of the inflammatory complexes, NLRP3, cytokines IL-1β and caspase-1. Ginseng and broccoli sprouts showed strong anti-cancer properties and had high anti-oxidant effects (p<0.001). Germanium-concentrated water allows the mass production of agricultural products containing high concentrations of organic germanium. Agricultural produce grown with germanium concentrate add organic germanium to various physiological active ingredients, increasing the anti-oxidant and anti-cancer effects. These results strongly suggest that agricultural products containing high germanium concentrations can be used as novel health supplements to improve health.

Comparison of Storability of Some Sprout Vegetables in MA Storage (MA저장중 몇가지 싹기름 채소의 저장성 비교)

  • Kang, Ho-Min;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.415-419
    • /
    • 2007
  • This study was conducted to compare the storability of some sprout vegetables; alfalfa, broccoli, radish, red-cabbage, and red-radish, packed with 50 low density polyethylene (LDPE) film in MA storage. Most of all 5 different sprout vegetable crops maintained the fresh weight higher than 99% until 10 days storage at 2 and $8^{\circ}C$. The carbon dioxide concentration in packages was higher at 8 than at $2^{\circ}C$. It was higher in radish and red-radish sprouts than other crops. As the oxygen concentration showed opposite trends to carbon dioxide, that of radish and red-radish sprouts decreased more than 3% after 3 days in 8 storage. Ethylene concentration in the packages of alfalfa was 0.1 ppm, significantly higher than other four crops with less than 1.0 ppm. Temperature treatment, however, did not influence the ethylene concentration in packages. The radish and red-radish sprouts, with lowest oxygen concentration in package, showed lowest off-flavor compared to the others. The visual quality of these sprouts in packages showed higher at $2^{\circ}C\;than\;at\;8^{\circ}C$ and was maintained the highest in radish sprouts, followed by red-radish, broccoli, red-cabbage, and alfalfa sprouts in that order. In conclusion, as the sprout vegetables have different shelf-life, of which radish was $4{\sim}5$ days longer than that of alfalfa the distributed condition of sprout vegetables should be differently controlled according to kinds of crops.

Organoleptic Properties of Cow Milk, Yoghurt, Kefir, and Soy Milk When Combined with Broccoli Oil: A Preliminary Study

  • Kim, Tae-Jin;Seo, Kun-Ho;Chon, Jung-Whan;Youn, Hye-Young;Kim, Hyeon-Jin;Kim, Young-Seon;Kim, Binn;Jeong, Soo-Yeon;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.2
    • /
    • pp.76-85
    • /
    • 2022
  • Broccoli sprouts are an excellent source of health-promoting phytochemicals, such as glucosinolates, phenols, and vitamins. In this investigation, oil extracted from broccoli was adjusted to various concentrations (control, 1%, 2%, 3%, 4%, and 5%, respectively) and added directly to dairy products (cow milk, yoghurt, and kefir) and non-dairy products (soy milk), and their organoleptic properties assessed. The results showed that when the amount of broccoli oil was increased, the organoleptic properties (texture, color, and flavor) and overall acceptability tended to decrease. Cow milk, yoghurt, kefir, and soymilk supple-mented with 1% broccoli oil showed the best organoleptic properties when compared to the control group. The fermented products such as yoghurt and kefir with added broccoli oil showed good organoleptic properties. Overall, the results of this study provide evidence for the use of broccoli oil in dairy and non-dairy products. Further research will be required to assess the various physiological active functions of broccoli oil.

Anti-oxidative effects of broccoli (Brassica oleracea var. italica) sprout extract in RAW 264.7 cell and cisplatin-induced testicular damage

  • Won-Young Lee;Hyun-Woo Shim;Hyun-Jung Park
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.189-198
    • /
    • 2023
  • Background: Brassica oleracea var. italica (broccoli), a rich source of antioxidants, can prevent various diseases and improve human health. In this study, we investigated the antioxidative effects of broccoli sprout extract on oxidative stress induced by lipopolysaccharide and cisplatin in cell and organ tissue models. Methods: Antioxidative effect of BSE was evaluated using DPPH and ABTS in RAW 364.7 cells, and effects of BSE on testes were investigated using Cisplatin-induced testicular damage model with an in vitro organ culture system. Results: The DPPH assay showed that the antioxidant activity of the alcoholic broccoli sprout extract was higher than that of the water extract. Additionally, the expression levels of antioxidation-related genes, Nrf2, Gsr, HO-1, and catalase, were significantly increased in broccoli sprout extract-treated RAW 264.7 cells, and the extract suppressed lipopolysaccharide-induced mitochondrial dysfunction. Based on the results in the RAW 264.7 cell culture, the antioxidative effects of the extracts were investigated in a mouse testis fragment culture. The expression of Nrf2, HO-1, and Ddx4 was clearly decreased in cisplatin-treated mouse testis fragments and not in both broccoli sprout extract- and cisplatin-treated mouse testis fragments. In addition, the oxidative marker O-HdG was strongly detected in cisplatin-treated mouse testis fragments, and these signals were reduced by broccoli sprout extract treatment. Conclusions: The results of this study show that broccoli sprout extracts could serve as potential nutraceutical agents as they possess antioxidant effects in the testes.

γ -Aminobutyric Acid (GABA) Content of Selected Uncooked Foods

  • Oh, Suk-Heung;Moon, Yeon-Jong;Oh, Chan-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.75-78
    • /
    • 2003
  • We analyzed the ${\gamma}$-aminobutyric acid (GABA) content of a selection of uncooked foods. Foods with GABA concentrations in excess of 100 nmole per g dry weight included: brown rice germ, brown rice sprouts, barley sprouts, bean sprouts, beans, corn, barley, brown rice, spinach, potatoes, sweet potatoes, yams, kale and chestnuts. Cereals included: brown rice germ, brown rice sprouts, barley sprouts, bean sprouts, beans, corn, barley, and brown rice and had GABA concentrations of 718, 389, 326, 302, 250, 199, 190, and 123 nmole per g dry weight (DW), respectively. The vegetables: spinach, potatoes, sweet potatoes, yams and kale contained 414, 166, 137, 129, 122 nmole GABA per g DW, respectively. The GABA concentration of chestnut was 188 nmole per g DW. However, oatmeal, adlay, broccoli, squash, carrots, onion, apples, lentinus edodes, green laver, and lactobacillus had GABA concentrations of less than 100 nmole per g DW. These results show that brown rice germ, sprouted cereals and spinach are good sources of plant-derived GABA. These data will be useful in selecting foods for the manufacturing of uncooked foods containing a relatively high concentrations of GABA.

Sanitation Effect of Sprouts by Chlorine Water. (염소수처리 의한 새싹채소의 살균 효과)

  • Lee, Kyung-A;Lee, Young-A;Park, In-Shik
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.751-755
    • /
    • 2009
  • This study was attempted to provide basic data for effective sanitization of sprouts. Sanitization treatments were performed by dipping four sprouts (alfalfa, broccoli, clover and red radish) into chlorine water. Microbial analyses were composed of the total plate count (TPC), coliform count, and E. coli count. All examined sprouts exhibited high levels of TPC ($10^{7}$ CFU/g) and coliform ($10^{6}$ CFU/g). E. coli was detected in broccoli and red radish sprouts in the range of $10^3{\sim}10^4$ CFU/g. Among chlorine water sanitization, the microbial reduction was largest in 100 ppm chlorine water, and its TPC and coliform counts decreased to $8.0{\times}10^5{\sim}2.7{\times}10^6$ CFU/g and $4.3{\times}10^5{\sim}4.6{\times}10^5$ CFU/g, respectively. E. coli was not detected in all sprouts that were given 100 ppm chlorine water treatment. The effective dipping time in 100 ppm chlorine water treatment was 30 min and 60 min, in which TPC were below the microbiological safety limits of ${\times}10^{6}$ CFU/g. Coliform counts were decreased to $9.1{\times}10^4{\sim}2.4{\times}10^5$ CFU/g when the sprouts were dipped for 30min, and kept the similar level after that time. These levels exceeded the microbiological safety limits of $10^{3}$ CFU/g. E. coli was not detected in samples by 100 ppm chlorine water treatment.