• Title/Summary/Keyword: Broad leaved tree

Search Result 201, Processing Time 0.031 seconds

Estimation of the Heating Value of Major Broad-Leaved Trees due to Moisture Content (주요 활엽수종의 함수율별 발열량 예측)

  • Hwang, Jin-Sung;Oh, Jae-Heun;Cha, Du-Song
    • Journal of Forest and Environmental Science
    • /
    • v.27 no.2
    • /
    • pp.119-125
    • /
    • 2011
  • Heating value is the one of most important factor in energy use of the woods. This study was investigated for determining the heating value according to the moisture content level(%) of major broad-leaved tree in Korea. Heating value was decreased rapidly regardless the kinds of species (Liriodendron tulipifera, Alnus japonica, and Quercus mongolica) and parts of woods (wood part, and bark) as the moisture content (MC) was increased. In addition, bark had higher heating value than wood part. Liriodendron tulipifera showed the highest heating value among the other two species.

Distributional Change and Climate Condition of Warm-temperate Evergreen Broad-leaved Trees in Korea (한반도 난온대 상록활엽수의 분포변화 및 기후조건)

  • Yun, Jong-Hak;Kim, Jung-Hyun;Oh, Kyoung-Hee;Lee, Byoung-Yoon
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.1
    • /
    • pp.47-56
    • /
    • 2011
  • The research was conducted to find optimal habitats of warm-temperate evergreen broad-leaved trees, and to investigate climate factors to determine their distribution using classification tree (CT) analysis. The warm-temperate evergreen broad-leaved trees model (EG-model) constructed by CT analysis showed that Mean minimum temperature of the coldest month (TMC) is a major climate factor in determining distribution of warm-temperate evergreen broad-leaved trees. The areas above the $-5.95^{\circ}C$ of TMC revealed the optimal habitats of the trees. The coldest month mean temperature (CMT) equitable to $-5.95^{\circ}C$ of TMC is $-1.7^{\circ}C$, which is lower than $-1^{\circ}C$ of CMT of warm-temperate evergreen broad-leaved trees. Suitable habitats were defined for warm-temperate evergreen broad-leaved trees in Korea. These habitats were classified into two areas according to the value of TMC. One area with more than$-5.95^{\circ}C$ of TMC was favorable to trees if the summer precipitation (PRS) is above 826.5mm; the other one with less than $-5.95^{\circ}C$ of TMC was favorable if PRS is above 1219mm. These favorable conditions of habitats were similar to those of warm-temperate evergreen broad-leaved trees in Japan. We figured out from these results that distribution of warm-temperate evergreen broad-leaved trees were expanded to inland areas of southern parts of Korean peninsula, and ares with the higher latitude. Finally, the northern limits of warm-temperate evergreen broad-leaved trees might be adjusted accordingly.

Vegetation Structure of Jeolgu Valley in the Nakdong-Jeongmaek (낙동정맥 절구골 지역의 식물군집구조)

  • Cho, Hyun-Seo;Lee, Soo-Dong;Kim, Mi-Jeong
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.5
    • /
    • pp.770-779
    • /
    • 2012
  • In order to verify the characteristics of vegetation structure in Jeolgu valley, Nakdongjeongmaek, we set up 29 plots(each plot area is $10m{\times}10m(100m^2)$. The survey site is located in around the valley and its range is about 3km section. The forest vegetation communities were analysed by TWINSPAN classification. The results of communities were classified 5 types such as Pinus densiflora community, deciduous broad-leaved tree community, Quercus variabilis community, Quercus mongolica community, Larix leptolepis community. The deciduous broad-leaved tree which prefer to moist environment and Quercus spp. has dominant in around the valley and the northern slope. In addition, Larix leptolepis community expect to maintain the present status for a while. However, the under story of Larix leptolepis community have expanded the influence of deciduous broad-leaved tree such as Fraxinus mandshurica, Morus bombycis, Acer mono and so on. Therefore, there will be developed next ecological succession by species of deciduous broad-leaved tree. The diversity index showed form 0.9665 to 1.2450. It were analyzed that diversity index of Jeolgu valley was higher than other places in Nakdongjeongmaek.

Comparison of Organic Matter Dynamics between Natural Deciduous Broad-Leaved Forest and Adjacent Artificial Evergreen Coniferous Forest

  • Takahiro, Ichikawa;Terumasa, Takahashi;Yoshito, Asano
    • The Korean Journal of Ecology
    • /
    • v.27 no.4
    • /
    • pp.217-224
    • /
    • 2004
  • The purpose of this study is to clarify the effects of the conversion of the forest management type from a natural deciduous broad-leaved forest to an artificial evergreen coniferous forest based on organic matter dynamics. We investigated the amounts and carbon contents of the forest floor and the litterfall, soil chemical characteristics and cellulose decomposition rates in the natural deciduous broad-leaved forest and adjacent artificial evergreen coniferous forest. In the artificial evergreen coniferous forest were planted Japanese cypress (Chamaecyparis obtusa) on the upper slope and Japanese cedar (Cryptomeria japonica) on the lower slope. The soil carbon and nitrogen contents, CEC and microbial activity had decreased due to the conversion of the forest management type from a natural deciduous broad-leaved forest to an artificial Japanese cypress forest, and were almost the same for the conversion to a Japanese cedar forest. Under the same conditions, it is considered that the soil fertility was different by planting specific tree species because the organic matter dynamics were changed by them.

Sound Absorption Property of the Leaves of Two Evergreen Broad-Leaved Tree Species, Dendropanax morbiferus and Fatsia japonica

  • JUNG, Su Young;YEOM, Da-Hye;KONG, Ree-Keun;SHIN, Gab Gyun;LEE, Kwang Soo;BYEON, Hee Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.631-640
    • /
    • 2020
  • In this study, the effect of specimen size and layer thickness on the sound absorption of the leaves of two evergreen broad-leaved tree species, Dendropanax morbiferus and Fatsia japonica, was investigated. The specimen sizes of 0.5 × 0.5, 1.0 × 1.0, and 2.0 × 2.0 ㎠ and layer thicknesses of 1.00, 1.75, and 2.50 cm were considered. At the layer thickness of 2.5 cm, the leaf of the D. morbiferus showed no significant difference in sound absorption coefficients (SACs) as the sample size varied, however, a significant change in SACs was recorded in that of the F. japonica. At 1.0-cm thickness, the SACs of the F. japonica leaf varied more remarkably with the sample size. The 2.50-cm-thick F. japonica leaf with the specimen size 0.5 × 0.5 ㎠ exhibited the highest sound absorption effect among all samples investigated.

Classification of tree species using high-resolution QuickBird-2 satellite images in the valley of Ui-dong in Bukhansan National Park

  • Choi, Hye-Mi;Yang, Keum-Chul
    • Journal of Ecology and Environment
    • /
    • v.35 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • This study was performed in order to suggest the possibility of tree species classification using high-resolution QuickBird-2 images spectral characteristics comparison(digital numbers [DNs]) of tree species, tree species classification, and accuracy verification. In October 2010, the tree species of three conifers and eight broad-leaved trees were examined in the areas studied. The spectral characteristics of each species were observed, and the study area was classified by image classification. The results were as follows: Panchromatic and multi-spectral band 4 was found to be useful for tree species classification. DNs values of conifers were lower than broad-leaved trees. Vegetation indices such as normalized difference vegetation index (NDVI), soil brightness index (SBI), green vegetation index (GVI) and Biband showed similar patterns to band 4 and panchromatic (PAN); Tukey's multiple comparison test was significant among tree species. However, tree species within the same genus, such as $Pinus$ $densiflora-P.$ $rigida$ and $Quercus$ $mongolica-Q.$ $serrata$, showed similar DNs patterns and, therefore, supervised classification results were difficult to distinguish within the same genus; Random selection of validation pixels showed an overall classification accuracy of 74.1% and Kappa coefficient was 70.6%. The classification accuracy of $Pterocarya$ $stenoptera$, 89.5%, was found to be the highest. The classification accuracy of broad-leaved trees was lower than expected, ranging from 47.9% to 88.9%. $P.$ $densiflora-P.$ $rigida$ and $Q.$ $mongolica-Q.$ $serrata$ were classified as the same species because they did not show significant differences in terms of spectral patterns.

The Grassland Type in Korea (한국의 초지형)

  • 박봉규
    • Journal of Plant Biology
    • /
    • v.9 no.3_4
    • /
    • pp.7-13
    • /
    • 1966
  • The investigation on the grassland type was conducted by the data in the previous these (Park 1963, '64, '65, '66). The results obtained are as follows; 1) I defined that the relationship between the valves of DS and the main species of the grass in Korea(Table Ⅰ) Grassland Stage ; Waste type………6 community-types Short grass type………3 community-types Pteridium type………1 community-types Tall grass type………4 community-types Sasamorpha type………1 community-types Shrubby Stage; Lespedeza type Pioneer tree type………6 species Forest Stage; Deciduous broad leave tree type………6 species Evergreen broad leaved tree type………3 species Evergreen needle leaved tree type………7 species 2) I defined; that the relationship between the valves of DS and the grassland type in Korea(Table 2). Of grassnland type, the range of valves of DS, 50-220 belongs to waste type; 130-310 short grass type; 230-640 tall grass type; 210-450 pteridium type; 510-970 sasamorpha type; 730-1450 shrubby type; 3) I decided; The succession stage centering on the Sasamorpha purpuracens in Korea(Table 3). 4) I decided the climate type and the grassland succession in Korea(Table 4).

  • PDF

Identification and Physical Characteristics of the Ancient Charcoals Excavated from Chudong-ri Site, Korea (서천 추동리 문화유적에서 채취된 숯의 수종식별과 물리적 특성)

  • Kim, Myung-Jin;Lee, Jong-Shin;Park, Soon-Bal
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.13-22
    • /
    • 2008
  • The identification of species, hygroscopic property, and ability of ethylene gas absorption of 23 ancient charcoals excavated from wooden coffin burials and roof-tile kilns of Chudong-ri cultural site were investigated. All of the 12 charcoals excavated from wooden coffin burials were broad-leaved trees. Among the total 12 samples, 9 samples were Lepidobalanus and others were Celtis spp.. On the other hand, other 11 charcoals from roof-tile kilns were needle-leaved tree, Pinus spp.(hard pine). The broad-leaved tree charcoals from wooden coffin burials showed a higher moisture absorption capacity than needle-leaved tree charcoals from roof-tile kilns. The ethylene gas absorption was greater in the Lepidobalanus charcoal than that of Celtis spp. and Pinus spp. (hard pine) charcoal. The broad-leaved tree charcoal having high absorption ability of substances was due to a large microporous and specific surface area. Therefore, it was estimated that broad-leaved tree charcoals were filled in order to make favorable condition in tomb. The wood quality of pine is soft and easy to burn because of low specific gravity, as well as high calorific value by resin in wood. We could assume that the pine wood was used as fuel for roof-tile kilns because of easy control of heating and thermal power.

  • PDF

Characteristic of Soil and Cambial Electrical Resistance for Investigation on Defect Cause of Planting Tree in Apartment

  • Cho, Chi-Woung;Yoo, Sun-Ah;Kim, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.21 no.11
    • /
    • pp.1307-1320
    • /
    • 2012
  • The purpose of this paper is to provide information on planting construction for healthy plant growth. To achieve this purpose, this study analyzed the planting type, planting density, withering rate, soil characteristics, and cambium electrical resistance (CER) of withered trees in an apartment complex with a high withering rate. The major plant groups examined consisted of native broad-leaved tree species (39.3%), native narrow-leaved tree species (24.2%), and native broad-leaved - exotic narrow-leaved tree species (16.4%). The planting density of the green area, where trees were planted from 0.0 to 0.3 trees per unit area, was measured as 98.4%. Withered trees were found in 19 of the 20 planted species, and the withering rate was 41.8% (610 withered/1,461 planted). Withering rates for tree species were measured as follows: Sophora japonica and Salix babylonica (100.0%), Magmolia denudata (84.3%), Lindera obtusiloba (74.7%), cornus kousa (69.3%), acer triflorum (69.2%), diospyros kaki (66.7%), Prunus yedoensis (62.8%), Acer palmatum (52.6%), Prunus armeniaca (51.1%), Chaenomeles sinensis (43.7%), Ginkgo biloba (40.9%), Zelkova serrata (31.0%), Cornus officinalis (28.6%), Taxus cuspidata (25.6%), Pinus densiflora (21.4%), Pinus parviflora (15.2%), Pinus strobus (14.6%), and Abies holophylla (10.3%). Soil chemical analyses for 18 samples revealed that as the withering rate increased, the following occurred: (a) the ratio of silt and clay in soil increased; (b) the soil pH, organic matter rate, nitrogen, available phosphorus, and cation exchange capacity (CEC) in samples were graded as "inadequate," based on the plant grading evaluation; and (c) the NaCl and cation exchange capacity were evaluated as "somewhat satisfactory." The measurement of CER for withering rate shows electrical resistance for higher withering rate are higher, which could predict that a tree will not grow well.

Community Structures of Evergreen Broad-leaved Forest of Mt. Yeogwi in Jin-do Island (진도 여귀산 상록활엽수림의 군집구조)

  • Jang, Jeong Jae;Kim, Joon Sun
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.410-419
    • /
    • 2005
  • Community structure of evergreen broad-leaved forest of Mt. Yeogwi in Jin-do was investigated to secure sustainable conservation of evergreen broad-leaved forest. Twenty survey plots of $20m{\times}20m$ were established along the elevation from 200 m to 390 m above the sea level in the northwestern slope. The woody species were tallied at each plots. DBH distribution of the major evergreen broad-leaved trees was investigated to find out the spatial distribution. Cluster analysis was applied to a set of vegetation data, that is, importance value to classify the forest community. Species diversity, evenness and species correlation were analysed. Canonical correspondence analysis was also applied to vegetation data and soil environmental data. Cluster analysis showed that the forests of Mt. Yeogwi were classified into 2 community groups, such as Camellia japonica community group and Quercus acuta community group. C japonica community group was subdivided into C japonica- evergreen broad-leaved trees community, C. japonica-Neolitsea sericea community, and C. japonica-deciduous broad-leaved trees community. Q. acuta community group was subdivided into Q. acuta-C. japonica community, and Q. acuta community. C. japonica, Q. acuta, N. sericea, Machilus thunbergii and Illicium religiosum were dominant evergreen broad-leaved tree species, while Styrax japonica, Lindera erythrocarpa, Cornus kousa, Prunus sargentii, Albizzia julibrisin and Quercus acutissima were major deciduous tree species. Species diversity was greater in Q. acuta community group (0.8231 for Q. acuta-C. japonica community, and 0.8135 for Q. acuta community) than in C. japonica community group (0.7674 for C. japonica-evergreen broad-leaved trees community, 0.6164 for C. japonica-N. sericea community, and 0.7931 for C. japonica-deciduous broad-leaved trees community). DBH 2 cm~10 cm of major evergreen broad-leaved trees occupied 80% of all. C. japonica of less than DBH 5 cm tended to aggregate but distribute randomly or regularly with increasing DBH. Q. acuta distributed more aggregately than C. japonica and Machilus thunbergii for more than 15 cm of DBH. C. japonica correlated negatively with Q. acuta, I. religiosum and C. kousa, but positively with N. sericea. with significance at 1% level. Q. acuta correlated negatively with C. japonica, N. sericea and M. thunbergii but positively with l. religiosum. There were also negative correlation between N. sericea and C. kousa. CCA showed that forest communities were correlated with soil variables such as CEC, soil organic matter and soil pH. With increased soil organic matter and CEC, and decreased soil pH, C. japonica was dominant and forest community and Q. acuta and N. sericea tended to develop in the evergreen broad-leaved forest.