• Title/Summary/Keyword: Brittle material

Search Result 477, Processing Time 0.034 seconds

Analysis of quasi-brittle materials using two-dimensional polygon particle assemblies

  • Lee, Jong Seok;Rhie, Yoon Bock;Kim, Ick Hyun
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.713-730
    • /
    • 2003
  • This paper contains the results of the study on the development of fracture and crack propagation in quasi-brittle materials, such as concrete or rocks, using the Discrete Element Method (DEM). A new discrete element numerical model is proposed as the basis for analyzing the inelastic evolution and growth of cracks up to the point of gross material failure. The model is expected to predict the fracture behavior for the quasi-brittle material structure using the elementary aggregate level, the interaction between aggregate materials, and bond cementation. The algorithms generate normal and shear forces between two interfacing blocks and contains two kinds of contact logic, one for connected blocks and the other one for blocks that are not directly connected. The Mohr-Coulomb theory has been used for the fracture limit. In this algorithm the particles are moving based on the connected block logic until the forces increase up to the fracture limit. After passing the limit, the particles are governed by the discrete block logic. In setting up a discrete polygon element model, two dimensional polygons are used to investigate the response of an assembly of different shapes, sizes, and orientations with blocks subjected to simple applied loads. Several examples involving assemblies of particles are presented to show the behavior of the fracture and the failure process.

A Study on the Grinding Characteristics of the Quartz(II) (Quartz의 연삭 특성에 관한 연구 (II))

  • Lim, J. G.;Ha, S. B.;Kim, S. H.;Choi, H.;lee, J. C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.875-879
    • /
    • 2000
  • In the previous report1), the grinding characteristics of quartz were investigated. In this paper, the grinding mechanisms of brittle materials including ceramics and quartz are modeled and a new parameter SDR(Surface roughness Direction Ratio) is proposed to characterize the grinding mechanisms of such materials. A set of experiments were performed to verify the effectiveness of the suggested parameter. The experimental results indicate that the plastic deformation is the dominant material removal mode at the grinding conditions which show the higher value of SDR. In the case of quartz, the material was removed by brittle fracture in a lower value of SDR and by plastic deformation in a higher value of it. SDR is not affected by wheel mesh size when brittle fracture occured. But in the plastic deformation case, SDR value increases with wheel mesh size.

  • PDF

A Study on the Ultraprecision Grinding for Brittle Materials With Electrolytic Dressing (전해드레싱에 의한 경취재료의 초정밀 연삭에 관한 연구)

  • 김정두;이연종;이창열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1486-1496
    • /
    • 1993
  • The diamond wheel with superabrasive is required for mirror-like surface grinding of brittle materials. But the conventional dressing mothod can not apply to the diamond wheel with superabrasive. Recently electrolytic dressing method was developed for cast-iron bonded diamond wheel with superabrasive. This technique can take replace of lapping and polishing. Using the electrolytic dressing, the surface roughness of workpiece was improved largely and grinding force was very low and the continuity of the grinding force was also very improved. In this study, the purpose is the realization of mirror-like surface grinding of ferrite with electrolytic dressing of metal bonded diamond wheel. For application of ultraprecision grinding for brittle material, superabrasive wheel, air spindle and inprocess electrolytic dressing were used. In addition, the effects of pick current and pulse width on ground surface were investigated, and the suitable dressing conditions for ferrite were found out.

Abrasive Water Jet Machining of Alumina Ceramics (어브레이시브 워터제트를 이용한 알루미나 세라믹스의 가공)

  • 최기상;최기흥;김정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2073-2080
    • /
    • 1994
  • In this paper, a model of material removal in abrasive water jet machining of brittle material is developed, and experimentally evaluated. Abrasive water jet machining proved to yield better material removal rate than other machining techniques for hard and brittle material (alumina ceramics). It was also found that large scale fracture may develop at the exit of the jet from the material. The fracture size was predicted as a function of water jet pressure and size of the hole. Finally, the feasibility of using acoustic emission signals for in-process monitoring of the abrasive water jet machining process is investigated.

The high-rate brittle microplane concrete model: Part I: bounding curves and quasi-static fit to material property data

  • Adley, Mark D.;Frank, Andreas O.;Danielson, Kent T.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.293-310
    • /
    • 2012
  • This paper discusses a new constitutive model called the high-rate brittle microplane (HRBM) model and also presents the details of a new software package called the Virtual Materials Laboratory (VML). The VML software package was developed to address the challenges of fitting complex material models such as the HRBM model to material property test data and to study the behavior of those models under a wide variety of stress- and strain-paths. VML employs Continuous Evolutionary Algorithms (CEA) in conjunction with gradient search methods to create automatic fitting algorithms to determine constitutive model parameters. The VML code is used to fit the new HRBM model to a well-characterized conventional strength concrete called WES5000. Finally, the ability of the new HRBM model to provide high-fidelity simulations of material property experiments is demonstrated by comparing HRBM simulations to laboratory material property data.

Study on Strain Response Converted from Deformation in Tensile Test of Carbon Fiber Reinforced Polymers (CFRP) (탄소섬유보강폴리머의 인장시험시 변형으로부터 환산한 변형률 응답에 대한 연구)

  • Kim, Yun-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.137-144
    • /
    • 2019
  • In coupon test of carbon fiber reinforced polymers (CFRP) as brittle materials, the converted strain derived from total deformation and effective length was introduced and its advantages were described. In general, measured value from strain gauge is used for determining the tensile properties of material, but it is not quite effective in CFRP because brittle material can not redistribute its stress and it only represents local behavior. For this reason, the converted strain response can be utilized effectively as a supplementary indicator, which evaluated the average value of tensile properties in brittle material and confirmed the strain measured by strain gauge. In addition, the converted strain clearly visualized 1) the effect of initial internal strain caused by fabrication errors and setup misalignment when applying gripping force and 2) post-response of partial rupture of CFRP caused by non-uniform strain distribution. non-uniform strain distribution.

Study on Rate Dependent Fracture Behavior of Structures; Application to Brittle Materials Using Molecular Dynamics (구조물의 속도 의존적 파괴 특성에 대한 연구; 입자동역학을 이용한 취성재료에의 적용)

  • Kim, Kunhwi;Lim, Jihoon;Llim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.529-536
    • /
    • 2008
  • The failure behavior of structures is changed under different loading rates, which might arise from the rate dependency of materials. This phenomenon has been focused in the engineering fields. However, the failure mechanism is not fully understood yet, so that it is hard to be implemented in numerical simulations. In this study, the numerical experiments to a brittle material are simulated by the Molecular Dynamics (MD) for understanding the rate dependent failure behavior. The material specimen with a notch is modeled for the compact tension test simulation. Lennard-Jones potential is used to describe the properties of a brittle material. Several dynamic failure features under 6 different loading rates are achieved from the numerical experiments, where remarkable characteristics such as crack roughness, crack recession/arrest, and crack branching are observed during the crack propagation. These observations are interpreted by the energy inflow-consumption rates. This study will provides insight about the dynamic failure mechanism under different loading rates. In addition, the applicability of the MD to the macroscopic mechanics is estimated by simulating the previous experimental research.

A Study on Mirror-like Polishing of Brittle Material by Elastic Emission Machining (탄성방출가공법에 의한 경취재료의 경면 폴리싱에 관한 연구)

  • 남성호;김정두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1009-1014
    • /
    • 1997
  • The small material removal rate of elastic emission machinong (EEM) becomes a serious problem due to using fine powder particles for obtaining finished of high quality. If a cylindrical polyurethane-wheel is used as a tool for accelerating powder particles, the efficiency of machining may be increased through enlarging the machining regionand increasing the surface velocity of the wheel. If these analyicl results are compared with experimental ones, characteristics of EEM using polyurethan-wheel can be clarified. In this study, effects of EEM using cylindrical polyurethane-wheel on the surface roughness and the material removal rate were verified through polishing of the brittle material under various conditions. The high-efficient polishing of silicon wafer has been also carried out using this method.

  • PDF

Analysis of the shear failure process of masonry by means of a meso-scopic mechanical modeling approach

  • Wang, Shuhong;Tang, Chun'an;Jia, Peng
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.181-194
    • /
    • 2006
  • The masonry is a complex heterogeneous material and its shear deformation and fracture is associated with very complicated progressive failures in masonry structure, and is investigated in this paper using a mesoscopic mechanical modelling, Considering the heterogeneity of masonry material, based on the damage mechanics and elastic-brittle theory, the newly developed Material Failure Process Analysis (MFPA) system was brought out to simulate the cracking process of masonry, which was considered as a three-phase composite of the block phase, the mortar phase and the block-mortar interfaces. The crack propagation processes simulated with this model shows good agreement with those of experimental observations by other researchers. This finding indicates that the shear fracture of masonry observed at the macroscopic level is predominantly caused by tensile damage at the mesoscopic level. Some brittle materials are so weak in tension relative to shear that tensile rather than shear fractures are generated in pure shear loading.

Effect of the Elasticity Modulus of the Jig Material on the Blade Edge Shape in the Grinding Process of Sapphire Medical Knife - Part 2 Verification of the Chipping Phenomenon and Elastic Modulus of the Jig Material (사파이어 의료용 나이프의 연삭가공에서 지그의 탄성계수가 날 부 형상에 미치는 영향 : 제2보 탄성계수와 치핑 현상의 검증)

  • Shin, Gun-Hwi;Kang, Byung-Ook;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.63-68
    • /
    • 2017
  • This study determines the selection of an appropriate jig material for the blade edge of the medical sapphire knife. The physical properties of the jig material affects the edge shape and chipping phenomenon in machining of the medical sapphire knife. If a grinding wheel is used, brittle workpieces such as sapphire are easily damaged by the propagation of cracks because the grinding force significantly increases. It is important to constantly maintain the grinding force in the grinding process of the brittle materials. The grinding force can be kept constantly by inducing the elastic deformation of the Jig material because the elastic deformation of brittle work-piece is negligibly low. The chipping phenomenon may be reduced by selecting the proper Jig material. Aluminum, copper, stainless steels and carbon steel were used as Jig materials. The experiment was conducted using a cast iron grinding wheel, which was installed on a conventional grinding machine with the ELID grinding system. The thickness and width of the chipping area were measured using an optical microscope and FE-SEM to analyze the shape of the blade edge. According to the experiment result, the chipping phenomenon decreased, and the sharp edge was formed when the jig materials with low elastic modulus were used.