• Title/Summary/Keyword: Brittle deformation

Search Result 244, Processing Time 0.025 seconds

Evaluation of Bending Creep Performance of Laminated Veneer Lumber (LVL) Formwork for the Design of Timber Concrete Composite (TCC) Structures

  • Hyun Bae KIM;Takuyuki YOSHIOKA;Kazuhiko FUJITA;Jun ITO;Haruka NOHARA;Keiji NOHARA;Toshiki NARITA;Wonwoo LEE;Arata HOSOKAWA;Tetsuiji TANAKA
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.375-382
    • /
    • 2024
  • The study focuses on evaluating the bending creep performance of laminated veneer lumber (LVL) formwork in timber concrete composite (TCC) structures. Timber-framed construction is highlighted for its environmental benefits and seismic resistance, but limitations such as poor tensile strength and brittle failure in bending hinder its use in high-rise buildings. Wood-concrete hybrid structures, particularly those using reinforced concrete slabs with TCC floors, emerge as a potential solution. The research aims to understand the time-dependent behavior of TCC components, considering factors like wood and concrete shrinkage and connection creep. The experiment was conducted in western Japan on the TCC floor designed for use in the Kama-city Inatsuki-higashi compulsory education school. The LVL formwork, measuring 9,000 mm by 900 mm, and concrete is loaded onto it for testing. The creep test periods are examined using concrete loading. It employs a comprehensive creep analysis, adhering to Japanese standards, involving deflection measurements and regression analysis to estimate the creep coefficient. Results indicate substantial deformation after shoring removal, suggesting potential reinforcement needs. The study recommends extending test periods for improved accuracy and recognizing regional climate impacts. Overall, the research provides valuable insights into the potential of LVL formwork in TCC structures, emphasizing safety considerations and paving the way for further experimentation under varied conditions to validate structural integrity.

Engineering Geological Implications of Fault Zone in Deep Drill Cores: Microtextural Characterization of Pseudotachylite and Seismic Activity (시추코어 단층대에서의 지질공학적 의미: 슈도타킬라이트의 미세조직의 특징과 지진활동)

  • Choo, Chang-Oh;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.489-500
    • /
    • 2017
  • It is not rare that pseudotachylite, dark colored rock with glassy texture, is recognizable in deep core samples drilled up to 900 m from the surface. Pseudotachylite with widths varying few to 20 cm is sharply contacted or interlayered with the host rocks composed of Jurassic granite and Precambrian amphibolite gneiss, showing moderately ductile deformation or slight folding. Pseudotachylite occurring at varying depths in the deep drill core are slightly different in texture and thickness. There is evidence of fault gouge at shallower depths, although brittle deformation is pervasive in most drill cores and pseudotachylite is identified at random depth intervals. Under scanning electron microscope (SEM), it is evident that the surface of pseudotachylite is characterized by a smooth, glassy matrix even at micrometer scale and there is little residual fragments in the glass matrix except microcrystals of quartz with embayed shape. Such textural evidence strongly supports the idea that the pseudotachylite was generated through the friction melting related to strong seismic events. Based on X-ray diffraction (XRD) quantitative analysis, it consists of primary minerals such as quartz, feldspars, biotite, amphibole and secondary minerals including clay minerals, calcite and glassy materials. Such mineralogical features of fractured materials including pseudotachylite indicate that the fractured zone might form at low temperatures possibly below $300^{\circ}C$, which implies that the seismic activity related to the formation of pseudotachylite took place at shallow depths, possibly at most 10 km. Identification and characterization of pseudotachylite provide insight into a better understanding of the paleoseismic activity of deep grounds and fundamental information on the stability of candidate disposal sites for high-level radioactive waste.

Analytical Study of Net Section Fracture in Special Concentrically Braced Frames (중심가새골조의 순단면 파단에 관한 해석적 연구)

  • Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Failure modes result in fracture or tearing, which may cause deterioration of resistance and reduction of inelastic deformation capacity. The potential failure modes for Special Concentrically Braced Frames (SCBFs) include fracture or tearing of the brace, net section fracture of the brace or gusset plate, fracture of the gusset plate welds, shear fracture of the bolts, block shear, excessive bolt bearing deformation, and buckling of the gusset plate. HSS tubular braces are commonly used in SCBFs, and net section fracture of the tubular brace may also occur through the brace net section at the end of the slot cut into the tube to slip over the gusset plate. This failure mode is categorized as a tension failure mode, and may cause dramatic loss of resistance and brittle behavior. Net section reinforcement is required according to AISC design specifications (AISC 2001). In this paper, the need to reinforce the net section area was discussed. Initially, the results of the net section fracture tests done by the University of California in Berkeley were presented with the modeling of these tests using FE models. To investigate the possibility of net section fracture in an actual frame, the slot end hole model was adapted to the frame FE model, and alternate near-fault histories were applied with tension-dominated cycles, since previous analyses showed that loading history was the most critical factor in net section fracture. The need for this reinforcement (cover plate) and the tension-dominated near-fault history were investigated.

Geological Structures and Geochemical Uranium Anormal Zone Around the Shinbo Mine, Korea (신보광산 주변지역의 지질구조와 우라늄 지화학 이상대)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.45 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • This paper examined the characteristics of ductile and brittle structural elements with detailed mapping by lithofacies classification to clarify the relationship between the geological structure and the geochemical high-grade uranium anormal zone and to provide the basic information on the flow of groundwater in the eastern area of Shinbo mine, Jinan-gun, Jeollabuk-do, Korea. It indicates that this area is mainly composed of Precambrian quartzite, metapelite, metapsammite, which show a zonal distribution of mainly ENE-WSW trend, and age unknown pegmatite and Cretaceous porphyry which intrude them. But the Cretaceous Jinan Group which unconformably covers them, contrary to assumption, could not be observed. The main ductile deformation structures of Precambrian metasedimentary rocks were formed at least through three phases of deformation [ENE striking regional foliation (D1) -> ENE or EW striking crenulation foliation (D2) -> WNW or EW trending open, tight, kink folds (D3)]. The predominant orientation of S1 regional foliation strikes ENE and dips south, being similar to the zonal distribution of Precambrian metasedimentary rocks. Most predominant orientation of high-angled brittle fracture (dip angle ${\geq}45^{\circ}$) [ENE (frequency: 24.3%) > NS (23.9%) > (N)NW (18.8%) > WNW (16.9%) > NE (16.1%) fracture sets in descending frequency order], which is closely related to the flow of groundwater, strikes ENE and dips south. It also agrees with the zonal distribution of metasedimentary rocks and the predominant orientation of S1 regional foliation. The next one strikes NS and dips east or west. Considering the controlling factor of the geochemical uranium anormal zone in the Shinbo mine and its eastern areas from the above structural data. the uranium source rock in these areas might be pegmatite and the geochemical uranium anormal zone in the Sinbo mine area could be formed by an secondary enrichment through the flow of pegmatite aquifer's groundwater into the Sinbo mine area like the previous research's result.

Digital Documentation and Short-term Monitoring on Original Rampart Wall of the Gyejoksanseong Fortress in Daejeon, Korea (대전 계족산성 원형성벽의 디지털기록화 및 단기모니터링 연구)

  • Kim, Sung Han;Lee, Chan Hee;Jo, Young Hoon
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.169-188
    • /
    • 2019
  • This study was carried out unmanned aerial photography and terrestrial laser scanning to establish digital database on original wall of Gyejoksanseong fortress, and measured ground control points for continuity of the monitoring. It also performed precise examination with the naked eye, unmanned aerial photogrammetry, endoscopy, total station and handy measurement to examine the structural stability of the original walls. The ground control points were considered as a point where visual field can be secured, 3 points were selected around each of the south and north walls. For the right side of the south original wall, aerial photogrammetry was conducted using drones and a deviation analysis of 3-dimensional digital models was performed for short-term monitoring. As a result, the two original walls were almost matched in range within 5mm, and no difference indicating displacement of stones was found, except for partial deviation. Regular monitoring of the areas with structural deformation such as bulging, weak and fracture zone by precisely examining with the naked eye and using high-resolution photo data revealed no distinct change. The inner foundation observed through endoscopy found out that filling stones of the original walls were still remained, while most filling soil was lost. As a result of measuring the total station focusing around the points with structural deformation on the original walls, the maximum displacements of the north and south walls were somewhat high with 6.6mm and 3.8mm, respectively, while the final displacements were relatively stable at below 2.9mm and 1.4mm, respectively. Handy measurement also did not reveal clear structural deformation with displacements below 0.82mm at all points. Even though the results of displacement monitoring on the original walls are stable, it is hard to secure structural stability due to the characteristics of ramparts where sudden brittle fracture occurs. Therefore, it is necessary to conduct conservational scientific diagnosis, precise monitoring, and structural analysis based on the 3-dimensional figuration information obtained in this research.

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

Effect of Tempering on Stretch-Flangeability of 980 MPa Grade Dual-Phase Steel (980 MPa급 이상조직강의 신장 플랜지성에 미치는 템퍼링의 영향)

  • Lee, Gun-Hee;Baek, Jong-Hee;Song, Eunji;Na, Seon-Hyeong;Park, Bongjune;Kim, Ju-Young;Kwon, Yongjai;Shin, Sang Yong;Lee, Jung Gu
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.292-300
    • /
    • 2020
  • In this study, the effect of tempering on the stretch-flangeability is investigated in 980 MPa grade dual-phase steel consisting of ferrite and martensite phases. During tempering at 300 ℃, the strength of ferrite increases due to the pinning of dislocations by carbon atoms released from martensite, while martensite is softened as a consequence of a reduction in its carbon super-saturation. This strength variation results in a considerable increase in yield strength of the steel, without loss of tensile strength. The hole expansion test shows that steel tempered for 20 min (T20 steel) exhibits a higher hole expansion ratio than that of steel without tempering (T0 steel). In T0 steel, severe plastic localization in ferrite causes easy pore formation at the ferrite-martensite interface and subsequent brittle crack propagation through the highly deformed ferrite area during hole expansion testing; this propagation is mainly attributed to the large difference in hardness between ferrite and martensite. When the difference in hardness is not so large (T20 steel), on the other hand, tempered martensite can be considerably deformed together with ferrite, thereby delaying pore formation and hindering crack propagation by crack blunting. Eventually, these different deformation and fracture behaviors contribute to the superior stretch-flangeability of T20 steel.

Reversed Lateral Load Tests on RC Frames Retrofitted with BRB and FRP (좌굴방지가새와 FRP로 보강된 RC골조의 반복 횡하중 실험)

  • Lee, Han-Seon;Lee, Kyung-Bo;Hwang, Seong-Jun;Cho, Chang-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.683-692
    • /
    • 2011
  • In piloti-type low-rise RC residential buildings, severe damages have been usually concentrated at piloti stories under the earthquake. In this study, a piloti story was retrofitted by installation of buckling-restrained braces (BRB's) to increase strength and stiffness of piloti story and by application of fiber reinforced polymer (FRP) sheet on columns to avoid the brittle shear and axial failure of columns. To verify this retrofit performance, reversed cyclic lateral load tests were performed on 1:5 scale bare and retrofitted frames. The test results showed that yield strength (43.2 kN) appeared to be significantly larger than design value (30 kN) due to the increase of strength in the compression side, but the stiffness value (11.6 kN/mm) turned out to be approximately one-half of the design value (24.2 kN/mm). The reasons for this difference in stiffness were due to slippage at joint between the frame and the BRB's, displacement and rotation at footing. The energy absorption capacity of the retrofitted frame was 7.5 times larger than that of the bare frame. The change of the number of load cells under the footing from 2 to 1 reduced lateral stiffness from 11.6 kN/mm to 6 kN/mm, which was only three times larger than that of the bare frame (2.1 kN/mm).

Anisotropy of Magnetic Susceptibility (AMS) of Granitic Rocks in the Eastern Region of the Yangsan Fault (양산단층 동편 화강암질암의 대자율 이방성(AMS))

  • Cho, Hyeong-Seong;Son, Moon;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.171-189
    • /
    • 2007
  • A study of anisotropy of magnetic susceptibility (AMS) was undertaken on Cretaceous granitic, volcanic and sedimentary rocks in the eastern region of the Yangsan fault, southeast Korea. A total of 542 independently oriented core samples collected form 77 sites were studied. The main magnetic mineral in granitic rocks is magnetite according to the magnitude of bulk susceptibility, high-temperature susceptibility variation and isothermal remanent magnetization. Both of magnetic lineation and foliation with NE-SW trends are revealed in the granitic rocks, while volcanic rocks show scattered directions and sedimentary rocks show only load foliation parallel to the bedding planes. The following evidences read to the conclusion that both magnetic fabrics in the granitic rocks have been obtained by a tectonic stress before full solidification of the magma: (i) A fully hardened granitic rocks would get hardly any fabric, (ii) Difference of the magnetic fabric trends with those of the geological structures in the granitic rocks themselves formed by brittle deformation after solidification (e.g. patterns of small-faults and joints), (iii) Kinking of biotite and undulose extinction in quartz observed under the polarizing microscope, (iv) Discordance of magnetic fabrics in the granitic rocks with those in the surrounding rocks. The NE-SW trend of the magnetic foliations suggests a NW-SE compressive stress of nearly contemporaneous with the emplacement of the granitic rocks. The compression should have caused a sinistral strike-slip movement of the Yangsan Fault considering the trend of the latter. As the age of the granitic rocks in the study area is reported to be around $60\sim70$ Ma, it is concluded that the Yangsan fault did the sinistral strike-slip movement during this time (L. Cretaceous Maastrichtian - Cenozoic Paleocene).

A study on the fatigue characteristics of SLS 3D printed PA2200 according to uniaxial cyclic tensile loading (SLS 3D 프린터를 이용하여 제작된 PA2200의 단축 반복 인장하중에 따른 피로 특성에 관한 연구)

  • Park, Jun-Soo;Jeong, Eui-Chul;Choi, Han-Sol;Kim, Mi-Ae;Yun, Eon-Gyeong;Kim, Yong-Dae;Won, Si-Tae;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • In this study, the fatigue behavior and fatigue life characteristics of PA2200 specimens fabricated by SLS 3D printer were studied. Fatigue tests were performed according to the standard specification (ASTM E468) and fatigue life curves were obtained. In order to perform the fatigue test, mechanical properties were measured according to the test speed of the simple tensile test, and the self-heating temperature of the specimen according to the test speed was measured using an infrared temperature measuring camera in consideration of heat generation due to plastic deformation. There was no significant difference within the set test speed range and the average self-heating temperature was measured at 38.5 ℃. The mechanical strength at the measured temperature showed a relatively small difference from the mechanical strength at room temperature. Fatigue test conditions were established through the preceding experiments, and the loading conditions below the tensile strength at room temperature 23 ℃ were set as the cyclic load. The maximum number of replicates was less than 100,000 cycles, and the fracture behavior of the specimens with the repeated loads showed the characteristics of Racheting. It was confirmed that SLS 3D printing PA2200 material could be applied to the Basquin's S-N diagram for the fatigue life curve of metal materials. SEM images of the fracture surface was obtained to analyze the relationship between the characteristics of the fracture surface and the number of repetitions until failure. Brittle fracture, crazing fracture, grain melting, and porous fracture surface were observed. It was shown that the larger the area of crazing damage, the longer the number of repetitions until fracture.