• Title/Summary/Keyword: Brittle deformation

Search Result 243, Processing Time 0.022 seconds

Damage characterization of hard-brittle rocks under cyclic loading based on energy dissipation and acoustic emission characteristics

  • Li, Cheng J.;Lou, Pei J.;Xu, Ying
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.365-373
    • /
    • 2022
  • In order to investigate the damage evolution law of rock specimens under cyclic loading, cyclic loading tests under constant loads with different amplitudes were carried out on limestone specimens with high strength and brittleness values using acoustic emission (AE) technology and the energy evolution and AE characteristics were evaluated. Based on dissipated energy density and AE counts, the damage variable of specimen was characterized and two damage evolution processes were analyzed and compared. The obtained results showed that the change of AE counts was closely related to radial deformation. Higher cyclic loading values result in more significant radial strain of limestone specimen and larger accumulative AE counts of cyclic loading segment, which indicated Felicity effect. Regarding dissipated energy density, the damage of limestone specimen was defined without considering the influence of radial deformation, which made the damage value of cyclic loading segment higher at lower amplitude loads. The damage of cyclic loading segment was increased with the magnitude of load. When dissipated energy density was applied to define damage, the damage value at unloading segment was smaller than that of AE counts. Under higher cyclic loading values, rocks show obvious damage during both loading and unloading processes. Therefore, during deep rock excavation, the damages caused by the deformation recovery of unloading rocks could not be ignored when considering the damage caused by abutment pressure.

나일론 섬유 보강 Slag-CB의 압축거동 특성 (Compressive Behavior of Reinforced Nylon Fiber Slag-CB)

  • 이윤경;김태연;이종규;주영수;이봉직
    • 한국지반환경공학회 논문집
    • /
    • 제24권11호
    • /
    • pp.5-10
    • /
    • 2023
  • 지하수 제어가 필요한 분야에서 다방면으로 활용되는 Slag-CB는 CB의 일종으로 CB에 혼합되는 시멘트의 일부를 GGBS 로 치환하여 사용하는 차수벽의 일종이다. 일반적으로 Slag-CB는 GGBS의 치환율이 증가함에 따라 압축강도, 차수성, 내구성 및 내화학성 등이 장기적으로 향상되는 장점이 있으나, 벽체의 유연성 및 변형에 대한 저항성이 저하되며 파괴 시 취성을 보이는 문제가 있다. 이러한 문제를 해결하기 위해 일부 품질기준에서는 Slag-CB를 저강도로 설계하도록 권장하고 있어 GGBS 치환율이 높은 고강도의 Slag-CB의 현장 적용에 다소 어려움이 있다. 이에 본 연구에서는 Slag-CB의 유연성 및 변형에 대한 저항성을 개선하여 취성파괴를 방지함으로 Slag-CB의 현장 활용성 및 적용성을 향상시키기 위해 나일론 섬유를 혼합한 Slag-CB 차수벽을 대상으로 압축거동 특성을 평가하고, 이를 비교·분석함으로 Slag-CB의 유연성 및 변형에 대한 저항성을 향상시킬 수 있는 방안을 제시하였다.

트럭용 커넥팅 로드 소재의 내부 품질에 따른 기계적 특성 연구 (A study on the Mechanical Characteristics by the Internal Quality of Connecting Rod Materials for Trucks)

  • 김동현
    • 한국생산제조학회지
    • /
    • 제7권1호
    • /
    • pp.75-81
    • /
    • 1998
  • We have studied internal quality including chemical compositions, microscopic structure and nonmetallic inclusion of test materials. We have analyzed tensile strength value, hardness value, impact value etc. In analyzing internal quality, all of the test materials showed typical ferrite+pearlite structure. But nonmetallic inclusion showed oxide and sulfide inclusions in medium carbon steels, and sulfide inclusion is S-free cutting steels. In ca+ S-free cutting steels, the calcium aluminate and sulfide complex inclusion had low-melting points as deformation of sulfide and oxide inclusion is existed. It was found that tensile strength and hardness give maximum value in medium carbon steels, where as minimum in Ca + -free cutting steels. But values of elongation, reduction of area impact are reverse. Fracture surface of impact specimen is ductile in free cutting steels but brittle in medium cabon steels.

  • PDF

Contribution of steel fiber as reinforcement to the properties of cement-based concrete: A review

  • Najigivi, Alireza;Nazerigivi, Amin;Nejati, Hamid Reza
    • Computers and Concrete
    • /
    • 제20권2호
    • /
    • pp.155-164
    • /
    • 2017
  • During the past decades, development of reinforcing materials caused a revolution in the structure of high strength and high performance cement-based concrete. Among the most important and exciting reinforcing materials, Steel Fiber (SF) becomes a widely used in the recent years. The main reason for addition of SF is to enhance the toughness and tensile strength and limit development and propagation of cracks and deformation characteristics of the SF blended concrete. Basically this technique of strengthening the concrete structures considerably modifies the physical and mechanical properties of plain cement-based concrete which is brittle in nature with low flexural and tensile strength compared to its intrinsic compressive strength. This paper presents an overview of the work carried out on the use of SF as reinforcement in cement-based concrete matrix. Reported properties in this study are fresh properties, mechanical and durability of the blended concretes.

Bi-2223/Ag 고온초전도 선재의 기계적 특성 평가 (Evaluation of mechanical properties of Bi-2223/Ag HTS tapes)

  • 하홍수;이동훈;양주생;최정규;윤진국;하동우;오상수;권영길
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.351-354
    • /
    • 2002
  • In most of electrical applications using Bi-2223/Ag HTS tapes, bending and tension stresses are essentially applied to the tape. Therefore, the critical current of the Bi-2223/Ag tape is degraded by increasing the deformation stress, though brittle superconducting filaments are embedded in the reinforced Ag alloy sheath. It is needed to understand bending and tension properties of HTS tapes at room temperature and cryogen to make superconducting magnet, cable and etc. using Bi-2223/Ag HTS tapes. Actually, bending and tension stress applied to the tapes simultaneously, when winding the tapes on former for applications. In this study, the effect of mechanical deformations, bending and tension, on the critical current of Bi-2223/Ag tape was investigated.

  • PDF

축력 및 반복 횡하중을 받는 철근 콘크리트 기둥의 변형능력에 관한 연구 (Deformation Capacity of Reinforced Concrete Columns Subjected to Axial Compression and Lateral Load Reversals)

  • 박광욱;이용택;유영찬;이원호;김성수;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.107-112
    • /
    • 1993
  • The objective of this experimental investigation is to examine the feasibility and the usefulness of the complementary crosstie in the current ACI 318-89 code for rienforced concrete columns subjected to constant axial load and lateral load reversals. Tests were conducted on1/3 scaled four columns with the length of 1.9m and the cross section of 20$\times$20 cm. The main parameters of specimens were the magnitude of axial load applied and the configuration of transverse reinforcements . From the experimental results, it can be seen that while the column subjected to lower axial load represented considerable ductility behaviors, the column subjected to higher axial load showed the brittle failure

  • PDF

나노 인덴테이션 공정의 유한요소해석 및 실험적 검증 (Finite Element Anlaysis of Nanoindentation Process and its Experimental Verification)

  • 이정우;윤성원;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.116-119
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic restoration and pile-up was proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1-10nm Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

  • PDF

경량화용 혼성 알루미늄 CFRP 사각튜브의 축 압궤특성 (Axial Collapse Characteristics of Combined Aluminum CFRP Square Tubes for Light-Weight)

  • 이길성;차천석;정진오;양인영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.110-113
    • /
    • 2004
  • Aluminum and CFRP tube is light-weight material representatively but collapse mechanism is different under axial loading. Aluminum tube absorbs energy by stable plastic deformation under axialloading. While CFRP(Carbon Fiber Reinforced Plastics)tube absorb synergy by unstable brittle failure but its specific strength and stiffness is higher than that of aluminum tube. In this study, for complement of detect and synergy effect by combination with the advantages of each member, the axialcollapsetests were performed for combined aluminum CFRP tubes which are composed of aluminum tubes wrapped with CFRP out side aluminum square tubes. Collapsecharacteristics were analyzed for combined square tubes which have different CFRP orientation angle and thickness. Test results were compared with that of aluminum tubes and CFRP tubes.

  • PDF

ANSYS를 이용한 송전용 자기재 애자의 장력에 따른 특성 변화 (A Variation of Maximum Stress with Axial Loading in Porcelain Insulators for Transmission Line using ANSYS)

  • 우병철;한세원;조한구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 유기절연재료 방전 플라즈마연구회
    • /
    • pp.104-107
    • /
    • 2003
  • The ageing cause in many porcelain suspension insulators which occur on transmission and distribution line with dead-end stings is mechanical stress in interface between porcelain and cement materials. It is known that the principal mechanical stress which give electrical failure is the results of the displacement is due to cement growth. We studied an analysing method to find out a deformation of brittle porcelain with a thermal expansion of cement for suspension insulator. These simulation analysis and experimental results show that cement volume growths affect severely to be mechanical failure ageing. These simulation analysis and experimental results show that axial loading affects of Porcelain insulators severely to be mechanical failure ageing.

  • PDF

마이크로 및 매크로 섬유를 사용한 하이브리드 HPFRCC의 역학적 특성에 관한 연구 (A Study on the Mechanical Properties of Hybrid HPFRCs Using Micro and Macro Fibers)

  • 김재환;이의배;김영선;김영덕;주지현;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.276-279
    • /
    • 2004
  • Concrete is one of the principal materials for the structure and it is widely used all over the world. but it shows extremely brittle failure under bending and tensile load. Recently to improve such a poor property. High Performance Fiber Reinforced Cementitious Composites (HPFRCC) have been developed. and it are defined by an ultimate strength higher than their first cracking strength and the formation of multiple cracking during the inelastic deformation process. This study is to develop the hybrid HPFRCC with high ductility and strain capacity in bending and tensile load. and the three-point bending test on hybrid HPRFCC reinforced with micro and macro fibers is carried out in this paper. As the results of the bending tests. hybrid HPFRCCs reinforced with PVA40+SF and PVA100+PVA660 showed the high ultimate bending stress, multiple cracks and displacement hardening under bending load.

  • PDF