• Title/Summary/Keyword: Brittle Debonding

Search Result 30, Processing Time 0.025 seconds

Patch Plate Repair Method for Steel Structures Combining Adhesives and Stud Bolts

  • Ishikawa, T.;Ikeda, T.
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1410-1419
    • /
    • 2018
  • Recently, a repair method by bonding patch plates is being applied to corroded steel structures. However, one of the issues of patch plate bonding repair is the brittle debonding of the patch plates. Generally, when the delamination of the patch plates occurs, the composite effect acting between the steel members and patch plates abruptly decreases. Therefore, to prevent the brittle debonding of the patch plates, a repair method combining an adhesive and stud bolts is proposed. Till date, tensile and compressive tests have been performed for the proposed method. In this study, plate bending tests were conducted to verify the effectiveness of this method under bending conditions. Furthermore, two types of epoxy resin-based adhesives were prepared to evaluate the effectiveness of the proposed method with different adhesive properties. The test results show that the proposed method is able to prevent the brittle debonding of the patch plates in the case of both epoxy resins.

Effect of Interfacial Debonding on the Material Properties of Brittle Matrix Composites (취성기지 복합재료의 물성치에 미치는 계면분리의 영향)

  • 염영진;진민철
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.42-49
    • /
    • 2003
  • Brittle matrix composites often have interfacial debonding between the fiber and matrix which may lead to strength and stiffness degradation. The effect of interfacial debonding and fiber volume fraction on the mechanical properties of composite material were studied by using finite element method. Firstly, the modelling of fiber and matrix constituting the composite material was simplified under some assumptions. Traction and displacement continuity conditions were imposed along the boundary of adjacent representative volume elements. In order to obtain the effective material properties of composite material, stiffness constants were inverted. Numerical values of longitudinal moduli in case of perfect bonding were compared with theoretical values obtained by rule of mixtures and yielded consistency. Material properties of composite with large debonding an81e were found to decrease even though the fiber volume fraction increased.

Experimental investigation on optimal shear strengthening of RC beams using NSM GFRP bars

  • Ramezanpour, M.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.45-52
    • /
    • 2018
  • Several techniques have been developed for shear strengthening of reinforced concrete (RC) members by using fiber reinforced polymer (FRP) composites. However, debonding of FRP retrofits from concrete substrate still deemed as a challenging concern in their application which needs to be scrutinized in details. As a result, this paper reports on the results of an experimental investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP reinforcing bars. The main objective of the experimentation was increasing the efficiency of shear retrofits by precluding/postponing the premature debonding failure. The experimental program was comprised of six shear deficient RC beams. The test parameters include the FRP rebar spacing, inclination angle, and groove shape. Also, an innovative modification was introduced to the conventional NSM technique and its efficiency was evaluated by experimental observation and measurement. The results testified the efficiency of glass FRP (GFRP) rebars in increasing the shear strength of the test specimens retrofitted using conventional NSM technique. However, debonding of FRP bars impeded exploiting all retrofitting advantages and induced a premature shear failure. On the contrary, application of the proposed modified NSM (MNSM) technique was not only capable of preventing the premature debonding of FRP bars, but also could replace the failure mode of specimen from the brittle shear to a ductile flexural failure which is more desirable.

Parallel computation for debonding process of externally FRP plated concrete

  • Xu, Tao;Zhang, Yongbin;Liang, Z.Z.;Tang, Chun-An;Zhao, Jian
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.803-823
    • /
    • 2011
  • In this paper, the three dimensional Parallel Realistic Failure Process Analysis ($RFPA^{3D}$-Parallel) code based on micromechanical model is employed to investigate the bonding behavior in FRP sheet bonded to concrete in single shear test. In the model, the heterogeneity of brittle disordered material at a meso-scale was taken into consideration in order to realistically demonstrate the mechanical characteristics of FRP-to-concrete. Modified Mohr-coulomb strength criterion with tension cut-off, where a stressed element can damage in shear or in tension, was adopted and a stiffness degradation approach was used to simulate the initiation, propagation and growth of microcracks in the model. In addition, a Master-Slave parallel operation control technique was adopted to implement the parallel computation of a large numerical model. Parallel computational results of debonding of FRP-concrete visually reproduce the spatial and temporal debonding failure progression of microcracks in FRP sheet bonded to concrete, which agrees well with the existing testing results in laboratory. The numerical approach in this study provides a useful tool for enhancing our understanding of cracking and debonding failure process and mechanism of FRP-concrete and our ability to predict mechanical performance and reliability of these FRP sheet bonded to concrete structures.

A State-of-the-Art Review on Debonding Failures of FRP Laminates Externally Adhered to Concrete

  • Kang, Thomas H.K.;Howell, Joe;Kim, Sang-Hee;Lee, Dong-Joo
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.123-134
    • /
    • 2012
  • There is significant concern in the engineering community regarding the safety and effectiveness of fiber-reinforced polymer (FRP) strengthening of RC structures because of the potential for brittle debonding failures. In this paper, previous research programs conducted by other researchers were reviewed in terms of the debonding failure of FRP laminates externally attached to concrete. This review article also discusses the influences on bond strength and failure modes as well as the existing experimental research and developed equations. Based on the review, several important conclusions were re-emphasized, including the finding that the bond transfer strength is proportional to the concrete compressive strength; that there is a certain bond development length that has to be exceeded; and that thinner adhesive layers in fact lower the chances of a concrete-adhesive interface failure. It is also found that there exist uncertainty and inaccuracy in the available models when compared with the experimental data and inconsistency among the models. This demonstrates the need for continuing research and compilation of data on the topic of FRP's bond strength.

Crack and Debonding Donitoring of RC Beams Strengthened with CFRP Plates (CFRP 판 보강 RC보의 균열 및 박리 손상 모니터링)

  • Yoon, Jun Ho;Han, Jung Hun;Cho, Doo Yong;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.185-192
    • /
    • 2011
  • A CFRP (Carbon Fiber-Reinforced Plastic) strengthening method being widely used to increase the load-carrying capacity of structures is very suitable for existing bridge structures. However, not only flexure and shear failures but also debonding failure might be additionally occured in reinforced concrete(RC) beams strengthened with the CFRP plates. The CFRP debonding failure would cause a brittle fracture of the beam. Therefore, health monitoring for the CFRP bonding condition is strongly required. In this study, a feasibility of the impedance-based damage detection method using PZT sensors was investigated through a series of experimental studies for realtime structural health monitoring(SHM) for the CFRP laminated concrete structures.

Fracture Characteristics of RC Beams Reinforced with GFSP (유리섬유-강 복합판으로 보강된 RC 보의 파괴 특성)

  • Kim, Chung Ho;Jang, Hee Suk;Ko, Sin Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.153-159
    • /
    • 2007
  • This paper is experimental investigation for failure characteristics and performance of a RC beams strengthened with GFSP which were developed for improvement of the early debonding problems in the externally bonded FRP systems. To represent damages and load conditions of the existing beam, pre-cracks and repeating loads are adopted for experimental parameters. In this experiment, it is confirmed that strengthening with GFSP is a very effective strengthening method for an increase in strength, a decrease in deflection, a control of the crack. But it shown that the design of the beams to be strengthened with GFSP should be consider a brittle behavior of the grass fiber on the flexural capacity.

Modeling of unilateral effect in brittle materials by a mesoscopic scale approach

  • Pituba, Jose J.C.;Neto, Eduardo A. Souza
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.735-758
    • /
    • 2015
  • This work deals with unilateral effect of quasi-brittle materials, such as concrete. For this propose, a two-dimensional meso-scale model is presented. The material is considered as a three-phase material consisting of interface zone, matrix and inclusions - each constituent modeled by an appropriate constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes randomly placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements developed here in order to capture the effects of phase debonding and interface crack closure/opening. As an initial approximation, the inclusion is modeled as linear elastic as well as the matrix. Our main goal here is to show a computational homogenization-based approach as an alternative to complex macroscopic constitutive models for the mechanical behavior of the quasi-brittle materials using a finite element procedure within a purely kinematical multi-scale framework. A set of numerical examples, involving the microcracking processes, is provided. It illustrates the performance of the proposed model. In summary, the proposed homogenization-based model is found to be a suitable tool for the identification of macroscopic mechanical behavior of quasi-brittle materials dealing with unilateral effect.

Mechanical behaviour between adjacent cracks in CFRP plate reinforced RC slabs

  • Yuan, Xin;Bai, Hongyu;Sun, Chen;Li, Qinqing;Song, Yanfeng
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.375-391
    • /
    • 2022
  • This paper discussed and analyzed the interfacial stress distribution characteristic of adjacent cracks in Carbon Fiber Reinforced Polymer (CFRP) plate strengthened concrete slabs. One un-strengthened concrete test beam and four CFRP plate-strengthened concrete test beams were designed to carry out four-point flexural tests. The test data shows that the interfacial shear stress between the interface of CFRP plate and concrete can effectively reduce the crack shrinkage of the tensile concrete and reduces the width of crack. The maximum main crack flexural height in pure bending section of the strengthened specimen is smaller than that of the un-strengthened specimen, the CFRP plate improves the rigidity of specimens without brittle failure. The average ultimate bearing capacity of the CFRP-strengthened specimens was increased by 64.3% compared to that without CFRP-strengthen. This indicites that CFRP enhancement measures can effectively improve the ultimate bearing capacity and delay the occurrence of debonding damage. Based on the derivation of mechanical analysis model, the calculation formula of interfacial shear stress between adjacent cracks is proposed. The distributions characteristics of interfacial shear stress between certain crack widths were given. In the intermediate cracking region of pure bending sections, the length of the interfacial softening near the mid-span cracking position gradually increases as the load increases. The CFRP-concrete interface debonding capacity with the larger adjacent crack spacing is lower than that with the smaller adjacent crack spacing. The theoretical calculation results of interfacial bonding shear stress between adjacent cracks have good agreement with the experimental results. The interfacial debonding failure between adjacent cracks in the intermediate cracking region was mainly caused by the root of the main crack. The larger the spacing between adjacent cracks exists, the easier the interfacial debonding failure occurs.

Improved interfacial stress analysis of a plated beam

  • Hao, Sheng-Wang;Liu, Yan;Liu, Xiao-Dan
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.815-837
    • /
    • 2012
  • A plated beam is strengthened by bonding a thin plate to the tension face; it often fails because of premature debonding of the thin plate from the original beam in a brittle manner. A sound understanding of the mechanism of such debonding failure is very important for the effective use of this strengthening technique. This paper presents an improved analytical solution for interfacial stresses that incorporates multiple loading conditions simultaneously, including prestress, mechanical and thermal loads, and the effects of adherend shear deformations and curvature mismatches between the beam and the plate. Simply supported beams bonded with a thin prestressing plate and subjected to both mechanical and thermal loading were considered in the present work. The effects of the curvature mismatch and adherend shear deformations of the beam and plate were investigated and compared. The main mechanisms affecting the distribution of interfacial stresses were analyzed. Both the normal and shear stresses were found to be significantly influenced by the coupled effects of the elastic moduli with the ratios $E_a/E_b$ and $E_a/E_p$.