• 제목/요약/키워드: Brittle

검색결과 1,762건 처리시간 0.025초

가전제품용 경첩의 신뢰성 추정 (Reliability Estimation of Door Hinge for Rome Appliances)

  • 김진우;신재철;김명수;문지섭
    • 대한기계학회논문집A
    • /
    • 제29권5호
    • /
    • pp.689-697
    • /
    • 2005
  • This paper presents the reliability estimation of door hinge for home appliances, which consists of bushing and shaft. The predominant failure mechanism of bushing made of polyoxymethylene(POM) is brittle fracture due to decrease of strength caused by voids existing, and that of shaft made of acrylonitrile-butadiene-styrene(ABS) is creep due to plastic deformation caused by excessive temperature and lowering of glass transition temperature by absorbed moisture. Since the brittle fracture of bushing is overstress failure mechanism, the load-strength interference model is used to estimate the failure rate of it along with failure analysis. By the way, the creep of shaft is wearout failure mechanism, and an accelerated life test is then planned and implemented to estimate its lifetime. Through the technical review about failure mechanism, temperature and humidity are selected as accelerating variables. Assuming Weibull lifetime distribution and Eyring model, the life-stress relationship and acceleration factor, $B_{10}$ life and its lower bound with $90\%$ confidence at worst case use condition are estimated by analyzing the accelerated life test data.

최적 연속 전해드레싱에 의한 연삭기구의 규명에 관한 연구 (A study on the analysis of grinding mechanism by using optimum in-process electrolytic dressing)

  • 이은상;김정두
    • 대한기계학회논문집A
    • /
    • 제21권8호
    • /
    • pp.1298-1310
    • /
    • 1997
  • In recent years, grinding techniques for precision machining of brittle materials used in electric, optical and magnetic parts have been improved by using superabrasive wheel and precision grinding machine. The completion of optimum dressing of superabrasive wheel makes possible the effective precision grinding of brittle materials. However, the present dressing system cannot have control of optimum dressing of the superabrasive wheel. In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This system can carry out optimum in-process dressing of superabrasive wheel, and give very effective control according to unstable current and gap increase. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of brittle materials.

FRC를 적용한 FRP-콘크리트 합성보의 거동특성 (Behavior Characteristics of FRP-Concrete Composite Beam using FRC)

  • 조정래;조근희;김병석;진원종;김성태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.742-745
    • /
    • 2004
  • The FRP-concrete composite deck system has advantages of corrosion free and easy construction. The system is, however, comprised of two brittle materials, so that it suffers from inherent disadvantage of lack of ductility. In this study, some conceptual design is presented for preventing the brittle failure of FRP-concrete composite deck at ultimate load level. 4-point bending tests are performed for FRP-concrete composite beams using FRC(Fiber Reinforced Concrete). The specimens use the box-shape FRP member in the lower portion. Four types of concrete with different compressive strengths and ductilities including normal mortar and 3 FRCs are placed in the upper portion. Typical failure mode in the test is identified; Concrete compressive failure occurs first at the maximum moment region, and the interfacial debonding between FRP and concrete member proceeds. Finally, the tensile rupture of FRP member occurs. The specimen using FRC with the high compressive ductility of concrete fails with less brittle manner than other specimens. The reason is that the ductility from the concrete in compression prevents the sudden loss of load-carrying capacity after compressive concrete failure.

  • PDF

적외선용 광학소자의 초정밀 절삭특성 (The Characteristics of Ultra Precision Machining of Optical Crystals for Infrared Rays)

  • 원종호;박원규;김주환;김건희
    • 한국기계가공학회지
    • /
    • 제2권1호
    • /
    • pp.57-62
    • /
    • 2003
  • Machining technique for optical crystals with single point diamond turning tool is reported in tills paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. SPDT has been widely used in manufacturing optical reflectors of non-ferrous metals such as aluminum and copper which are easy to be machined for their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result, the cutting force is steady, the cutting force range is 0.05-0.08N. The surface roughness is good when spindle is above 1400rpm, and feed rate is small. The influence of depth of cut is very small.

  • PDF

알루미늄 합금의 피로강도향상과 피로특성에 미치는 쇼트피닝 영향 (The Effect of Shot Peening on the Improvement of Fatigue Strength and Characteristics Fatigue Crack of the Aluminum Alloys)

  • 전현배;임만배;박원조
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.256-261
    • /
    • 2007
  • The purpose of this study is to investigate the effect of shot peening on the fatigue strength and fatigue life of two kinds of aluminum alloys. The fatigue strength behavior of aluminum alloys were estimated by the stress ratio and shot velocities. The fatigue life and strength increased with increasing the test shot velocity. However, at the shot velocity range between 50m/s and 70m/s, the compressive residual stress phenomena were observed in test conditions of different shot velocity. The optimal shot velocity is acquired by considering the peak values of the compressive residual stress, dislocations, brittle striation, slip, and fisheye on the fracture surface of test specimen. It was observed from the SEM observation on the deformed specimen that the brittle striation, fisheye were showed in the intergranular fracture structure boundaries at the this velocities. Therefore, fatigue strength and fatigue life would be considered that shot velocity has close relationship with the compressive residual stress.

  • PDF

Compression test of RCFT columns with thin-walled steel tube and high strength concrete

  • Xiamuxi, Alifujiang;Hasegawa, Akira
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.391-402
    • /
    • 2011
  • It is clear from the former researches on reinforced concrete filled steel tubular (RCFT) structures that RCFT structures have higher strength and deformation capacity than concrete filled steel tubular (CFT) structures. However, in the case of actual applications to large-scaled structures, the thin-walled steel tube must be used from the view point of economic condition. Therefore, in this study, compression tests of RCFT columns which were made by thin-walled steel tube or small load-sharing ratio in cooperation with high strength concrete were carried out, meanwhile corresponding tests of CFT, reinforced concrete (RC), pure concrete and steel tube columns were done to compare with RCFT. By the a series of comparison and analysis, characteristics of RCFT columns were clarified, and following conclusions were drawn: RCFT structures can effectively avoided from brittle failure by the using of reinforcement while CFT structures are damaged due to the brittle failure; with RCFT structures, excellent bearing capacity can be achieved in plastic zone by combining the thin-walled steel tube with high strength concrete and reinforcement. The smaller load-sharing ratio can made the reinforcement play full role; Combination of thin-walled steel tube with high strength concrete and reinforcement is effective way to construct large-scaled structures.

Monitoring of fracture propagation in brittle materials using acoustic emission techniques-A review

  • Nejati, Hamid Reza;Nazerigivi, Amin;Imani, Mehrdad;Karrech, Ali
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.15-27
    • /
    • 2020
  • During the past decades, the application of acoustic emission techniques (AET) through the diagnosis and monitoring of the fracture process in materials has been attracting considerable attention. AET proved to be operative among the other non-destructive testing methods for various reasons including their practicality and cost-effectiveness. Concrete and rock structures often demand thorough and real-time assessment to predict and prevent their damage nucleation and evolution. This paper presents an overview of the work carried out on the use of AE as a monitoring technique to form a comprehensive insight into its potential application in brittle materials. Reported properties in this study are crack growth behavior, localization, damage evolution, dynamic character and structures monitoring. This literature review provides practicing engineers and researchers with the main AE procedures to follow when examining the possibility of failure in civil/resource structures that rely on brittle materials.

WELDING HEAT-INPUT LIMIT OF ROLLED STEELS FOR BUILDING STRUCTURES (SN400BAND SN490B) BASED ON SIMULATED HAZ TESTS

  • Sakino, Yoshihiro;Horikawa, Kohsuke;Kamura, Hisaya
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.714-719
    • /
    • 2002
  • In The Great Hanshin-Awaji Earthquake, the general yield brittle fractures were observed in beam-column connections of steel building frames. Among many influencing factors which affect the general yield brittle fracture, it can be considered that fracture toughness has substantial effects. Some studies are making clear the required toughness for the base metal and the weld metal, but general values are not proposed. Moreover, it seems that it is also important to pay attention to the toughness decrease in the weld heat affected zone (weld HAZ), because the toughness decrease occurs in the HAZs of mild steel. In this paper, the relationship between toughness of simulated HAZs of "the rolled steels for building structures (SN)" and the weld heat-input limit of the SN steel are investigated, in an attempt to provide the required toughness for HAZs. The relationships between the increase of the hardness value and toughness, and changes of microstructure after weld heat-input are also discussed. The main results are summarized as follows. 1) The SN400B can keep its toughness at higher heat-inputs compare to the SN490Bs. 2) The steel grade, which becomes harder than other steel grades at the same heat-input, has smaller absorbed energy and smaller limit of heat-input. 3) The weld heat-input limit of the SN400B and the SN490B are proposed separately for some required toughness values.

  • PDF

API-581에 의한 정량적 위험기반검사에서 취성파괴에 의한 사고발생 가능성 해석 (Analysis of Likelihood of Failure for the Brittle Fracture through Quantitative Risk Based Inspection using API-581)

  • 김태옥;이헌창;장서일
    • 한국가스학회지
    • /
    • 제10권1호
    • /
    • pp.1-6
    • /
    • 2006
  • 압력설비를 안전하고 효율적으로 사용하기 위하여 본 연구에서는 API-581 절차에 의한 위험기반검사에서 취성파괴에 의한 사고발생 가능성을 정량적으로 해석하였다. 그 결과, 낮은 온도/낮은 인성파괴와 뜨임취성에서는 A 충격곡선이고. 낮은 온도와 열처리 전인 상태에서 기술종속계수(TMSF)가 큰 값을 나타내었고, $855^{\circ}F$ 취성에서는 위험도가 무시할 수 있었으나, 시그마상 취성에서는 낮은 온도의 고 시그마인 경우에 TMSF가 큰 값을 나타내어 사고발생 가능성이 매우 높았다.

  • PDF

취성재의 손상후 잔류강도 평가 (Evaluation of Residual Strength in Damaged Brittle Materials)

  • 오상엽;신형섭;서창민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.137-142
    • /
    • 2001
  • In structural applications, brittle materials such as soda-lime glasses and ceramics are often subjected to multiaxial stress. Brittle materials with crack or damaged by foreign object impacts are abruptly fractured from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength has been derived from tests under uniaxial stress such as a 4-point bend test. The strengths under multiaxial stresses might be different from the strength. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test. In the case that crack having 90deg. to loading direction, the ratio of biaxial to uniaxial flexure strength was 1.12. At a different crack angle to loading direction when it was evaluated by the 4-point bend test, the residual strength was different and the ratio of 45deg. to 90deg. was 1.16.

  • PDF