• Title/Summary/Keyword: Brinell Hardness

Search Result 39, Processing Time 0.028 seconds

Physical and Mechanical Properties of Sawdust Board Made of Thinning Logs (II) - The Effect of Density and Additive Quantity of Powder Phenolic Resin -

  • Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.17-23
    • /
    • 2003
  • As a fundamental study of developing sawdust board from thinning softwood logs from three species (Pinus densiflora S. et Z., Larix leptolepis G. and Pinus koraiensis S. et Z.), this study examined the effect of board density and resin content on physical and mechanical properties of sawdust board. As the board density increase, thickness swelling, bending strength, and Brinell hardness increased while water absorption decreased. With increasing the resin content, the bending strength and hardness increased while water absorption and thickness swelling decreased. The board made of L. leptolepis was slightly low in its water absorption, and the one made of P. koraiensis was a little high in its bending strength, while there was no definite difference between each kind of trees in their hardness values.

Physical and Mechanical Properties of Board Made from Carbonized Rice Husk (왕겨숯을 이용하여 제조한 보드의 물성)

  • Hwang, Jung-Woo;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.62-71
    • /
    • 2017
  • This study was investigated on the properties of board made from carbonized rice husk differed in density of board, resin addition ratio and sawdust addition ratio. Water absorption is showed the lowest value to 80.09% when the resin addition ratio of 25%, as the density increased and sawdust addition ratio decreased, the water absorption was decreased. The measured thickness swelling satisfied with the quality standards of KS F 3104, so the feasibility of building interior has been confirmed in the dimensional stability. In case of resin addition ratio of 25%, the internal bond strength was satisfied quality standards of KS F 3104 to $0.244N/mm^2$. With increasing the density, resin and sawdust addition ratio, brinell hardness increased.

Manufacturing and Physical Properties of Composite Board with Sawdust and Orange Peels (톱밥과 귤박을 이용한 혼합보드제조 및 물성)

  • Oh, Seung Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.528-534
    • /
    • 2013
  • This study was carried out to explore a new application of board and obtain fundamental properties for producing composite board from sawdust and orange peels. As the mixing rate of orange peels increased from 10% to 40%, water absorption, thickness swelling, modulus of rupture and brinell hardness decreased as follows : 94.1%~86.5%, 27.2%~18.0%, $65.1kgf/cm^2{\sim}39.2kgf/cm^2$ and $195.3kgf/cm^2{\sim}180.3kgf/cm^2$, respectively. As the density of board increased from $0.4g/cm^3$ to $0.8g/cm^3$, thickness swelling, modulus of rupture and brinell hardness increased as follows: 6.4%~17.9%, $4.2kgf/cm^2{\sim}96.6kgf/cm^2$ and $40.4kgf/cm^2{\sim}196.2kgf/cm^2$, respectively. But the water absorption decreased from 149.2% to 58.6%.

Fixation of Compression Set of Heat-Compressed Wood by Steaming (수증기 처리에 의한 열압밀화목재의 압축 고정)

  • 이원희;한규성
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.1
    • /
    • pp.85-89
    • /
    • 2000
  • This study investigated the effect of steaming on fixation of compression set and the effect of these treatments on mechanical properties of heat-compressed wood specimens. To determine the effect of steaming after compression set, wood specimens were compressed for 100min at 180f and then steamed for 20-100min at $120^{\circ}C$. Swelling tests were used to evaluate recovery of compression set. Bending, compression, and Brinell hardness tests were carried out for evaluating mechanical properties. Compressed wood steamed for 100 min at $120^{\circ}C$ showed 1.9% recovery of set, increases in bending and compressive properties, and no hardness change. We concluded that almost complete fixation of compression set in wood can be achieved by steaming compressed wood.

  • PDF

An Investigation of How the Accelerator Effects the Setting Time and The Headness of Plaster Products (석고제품(石膏製品)에 촉진제(促進劑) 사용시(使用時) 경화시간(硬化時間) 및 경도(硬度)에 미치는 영향(影響)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Hwang, Seung-Sig
    • Journal of Technologic Dentistry
    • /
    • v.19 no.1
    • /
    • pp.43-54
    • /
    • 1997
  • This investigation is carried out of inqurie into the effects of the accelerator on the setting time and haedness when it is used with plaster products. Plaster($\beta$), dental hard stone($\alpha$), and limproved dental hard stone($M{\alpha}$) are selected as the objects of the investigation, since they are most common materials for dental plaster products. Setting time is gauged by means of Vicket Needle and Gilmore Needle, and hardness is gauged by means of Brinell and Vicket Hardness machines. Samples of each material are made in the standerd water powder ratio and with the accelerator repectively, Every material is tested five times each. The results of the tests are as fallow : 1) In each case the setting time is shortened when the accelerator is used. 2) Of the three materials the hardness of the plaster was lowest A($\beta$) < B($\alpha$) < C($M{\alpha}$)} 3) In each case the hardness of the samples made in the standard water powder ratio were higher than that of the sample made with the accelerator. A1 > A2 ; B1>B2 ; C1>C2 4) Final Conclusion : Higher quality cast is expected when it is made in the standard water powder ratio.

  • PDF

Study on Durability of Wood Deck according to Species (수종별 목재 데크재의 내구성에 관한 연구)

  • Kim, Kyoung Jung;Lee, Won Jae;Choi, Chul;Kim, Hee Jin;Kang, Seog Goo
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.2
    • /
    • pp.111-117
    • /
    • 2017
  • Recently, as people's interest in wood has increased, the use of wood as household and landscape decking materials has increased. As the deck material, imported wood such as synthetic wood, Ipe, and Malas was used in addition to the existing preserved wood, but recently deck use has been activated as part of the activation of domestic materials. As an important quality factor in the selection of such decking materials, various durability along with weatherability for long - term use is required for maintenance. Generally used tropical hardwoods have excellent weatherability and durability without additional preservative treatment. However, the domestic larch is a wood species with a higher specific gravity and durability than ordinary conifers. However, it has not yet been used as a deck material due to lack of comparative studies on its characteristics. Therefore, hardness and durability of wood were measured using six specimens of Ipe, Massaranduba, Malas, Douglas-fir, Larch and Torrefied-Larch. Density Profile was used to measure the density, and Brinell hardness test and resistance test against momentary impact were carried out for the test of resistance to static load. Also, The hardness and durability of wood were measured by castor test with resistance test against dynamic load, as well as, nail down test by experiment on surface hardness and durability. As a result of the experiment, the hardness was increased in proportion to the density, and it was confirmed that the imported lumber was harder and durable than the domestic larch.

Effect of Solution Treatment Conditions on the Microstructure and Hardness Changes of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu Alloys (Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu 합금의 미세조직 및 경도 변화에 미치는 용체화 처리 조건의 영향)

  • Sung-Bean Chung;Min-Su Kim;Dae-Up Kim;Sung-Kil Hong
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.337-346
    • /
    • 2022
  • In order to optimize the solution treatment conditions of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu alloys, a series of heat treatment experiments were conducted under various solution treatment times up to 7 hours at 545℃, followed by a microstructural analysis using optical microscopy, FE-SEM, and Brinell hardness measurements. Rapid coarsening of eutectic Si particles was observed in the alloys during the first 3 hours of solution treatment but the size of those Si particles did not change at longer solution treatment conditions. Meanwhile, the degree of spheroidisation of eutectic Si particles increased until the solution treatment time was increased up to 7 hours. Q-Al5Cu2Mg8Si6 andθ-Al2Cu were observed in as-cast Cu-containing Al alloys but the intermetallic compounds were dissolved completely after 3 hours of solution treatment at 545℃. Depending on the initial Mg composition of the Al alloys, π-Al8FeMg3Si either disappeared in the alloy with 0.3wt% of Mg content after 5 hours of solution treatment or remained in the alloy with 0.5wt% of Mg content after 7 hours of solution treatment time. Mg and Cu content in the primary-α phase of the Al alloys increased until the solution treatment time reached 5 hours, which was in accordance with the dissolution behavior of Mg or Cu-containing intermetallic compounds with respect to the solution treatment time. From the results of microstructural changes in the Al-7Si-Mg-Cu alloys during solution treatment, it was concluded that at least 5 hours of solution treatment at 545℃ is required to maximize the age hardening effect of the present Al alloys. The same optimal solution treatment conditions could also be derived from Brinell hardness values of the present Al-7Si-Mg-Cu alloys measured at different solution treatment conditions.

Research for The Chain Sprocket Produce by Fine Blanking (복합 Fine Blanking 공정을 이용한 Chain Sprocket 개발을 위한 연구)

  • 강태호;김인관;조광수;김영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1597-1600
    • /
    • 2003
  • Fine-Blanking is an advanced and precision stamping process, by which a component with precise geometry and smooth cut surface can be produced without any further major secondary operations. By applying the Fine-Blanking technology, the significant improvement of the component should be obvious. As the components are with good shape, smooth surface and precise size, they can be ready for assembly without any further secondary operations. The productivity is increased, the production cycle time and the component cost are significantly reduced. We apply the fine-Blanking for chain sprocket. And do Mecanical test for compress strenth. impaact, roughness, Brinell hardness, dimensional stability.

  • PDF

Experimental Studies on the Properties of Epoxy Resin Mortars (에폭시 수지 모르터의 특성에 관한 실험적 연구)

  • 연규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF

Properties of Sawdust Board Made from Thinned Logs( I ) - Effect of Pressure and Press Time (간벌재로 제조된 톱밥보드의 물성(I) - 가압압력 및 열압시간의 영향 -)

  • 오승원
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.2
    • /
    • pp.10-16
    • /
    • 2002
  • In this study, sawdust boards with a density 0.6g/$cm^2$, powder phenol resin containing 10% were made from thinned logs of Pinus densiflora, Larix leptolepis and Pinus koraiensis. Four levels of the pressure and press time were designed to investigate the effect on the properties of sawdust boards. Thickness swelling and water absorption were increased as press time was decreased. The condition of 3-stage pressure for lower thickness swelling and water absorption of board was 40$\rightarrow$30$\rightarrow$20kgf/$cm^2$. Bending strength and brinell hardness were decreased as press time was decreased. But there have no change with pressing pressure. These results indicated that properties of sawdust board were affected by press time.

  • PDF