• Title/Summary/Keyword: Brine salting

Search Result 54, Processing Time 0.2 seconds

Fermentation Characteristics of Kimchi Treated with Different Methods of Green Tea Water Extracts (녹차의 처리방법에 따른 김치의 발효특성)

  • Kim, Mee-Kyung;Kim, Soon-Dong
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.354-359
    • /
    • 2003
  • This study was conducted to investigate the fermentation characteristics of kimchi treated with different methods of water extracts of powdered green tea(GT). Four different kimchis, the SB-kimchi(control) which was not treatment of the extracts, SG-kimchi prepared with Chinese cabbage(CC) salted in 1% GT containing 10% brine, DG-kimchi prepared with CC dipped in 1% GT for 30 min after salting, MS-kimchi prepared with the salted CC mixed with 1% GT containing seasonings. All kimchis was fermented at 10$^{\circ}C$. The pH of treated-kimchis were maintained higher than those of control products during fermentation, but it showed no big difference between each treated groups. Total microbe of SB-kimchi(6.27-9.37 cfu/mL) was higher than those of GT-treated kimchi(5.17-9.20) during fermentation. The ratio of lactic acid bacteria against total microbe was higher than the treated kimchis. Total polyphenol content of kimchi was 52.75 mg% in DG-kimchi, 47.71 mg% in MS-kimchi, 44.89 mg% in SG-kimchi, 30.70 mg% in SB-kimchi on the 5th days of fermentation. Scores of crispy taste of SG- and DG-kimchi on the 5th days of fermentation was 4.03 and 4.01 points, respectively which was higher than control products. Scores of fishy and hot taste of GT-treated kimchi were lower than those of control products during all fermentation periods.

Fermentation Characteristics of Kimchi Treated with Different Methods of Green Tea Water Extracts (녹차의 처리방법에 따른 김치의 발효특성)

  • 김미경;김순동
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.345-359
    • /
    • 2003
  • This study was conducted to investigate the fermentation characteristics of kimchi treated with different methods of water extracts of powdered green tea(GT). Four different kimchis, the SB-kimchi(control) which was not treatment of the extracts, SG-kimchi prepared with Chinese cabbage(CC) salted in 1% GT containing 10% brine, DG-kimchi prepared with CC dipped in 1% GT for 30 min after salting, MS-kimchi prepared with the salted CC mixed with 1% GT containing seasonings. All kimchis was fermented at 10$^{\circ}C$. The pH of treated-kimchis were maintained higher than those of control products during fermentation, but it showed no big difference between each treated groups. Total microbe of SB-kimchi(6.27-9.37 cfu/mL) was higher than those of GT-treated kimchi(5.17-9.20) during fermentation. The ratio of lactic acid bacteria against total microbe was higher than the treated kimchis. Total polyphenol content of kimchi was 52.75 mg% in DG-kimchi, 47.71 mg% in MS-kimchi, 44.89 mg% in SG-kimchi, 30.70 mg% in SB-kimchi on the 5th days of fermentation. Scores of crispy taste of SG- and DG-kimchi on the 5th days of fermentation was 4.03 and 4.01 points, respectively which was higher than control products. Scores of fishy and hot taste of GT-treated kimchi were lower than those of control products during all fermentation periods.

Effect of Food Additives on the Histamine Formation during Processing and Storage of Mackerel (1) Effect of Salt, Acidulants ana Sweetenings (고등어의 가공 및 저장중의 히스타민 생성에 미치는 첨가물의 영향(1) 식염, 산미료 및 감미료의 영향)

  • KANG Jin-Hoon;PARK Yeung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.5
    • /
    • pp.383-390
    • /
    • 1984
  • The present paper was carried out to elucidate the effect of salt-treatment and the addition of some food additives on the histamine formation and histidine decarboxylase activity in mackerel muscle during storage under different conditions. The histamine formation was inhibited by salting and histamine was hardly formed regardless of the brine concentraction during storage at $5^{\circ}C$. While, during storage at $25^{\circ}C$, the inhibitory effect upon the histamine formation and histidine decarboxylase activity was in proportion to the increase of the brine concentration. The addition of accidulants such as citric acid, malic acid and succinic acid inhibited the histamine formation and histidine decarboxylase activity. Especially, the histamine contents in the muscle added $10\%$ of citric acid and malic acid was below the critical concentration of poisoning for histamine during storage at $25^{\circ}C$ for 10 days. The histamine formation and histidine decarboxylase activity were inhibited by the $10\%$ addition of D-sorbitol, while there was no significant effect in the case of $5\%$ addition. Generally, the histamine content was increased with histidine decarboxylase activity, but didn't reveal the quantitative correlation ship with the enzyme activity.

  • PDF

Physiochemical and Organoleptic Properties of Feta Cheese Made from Goat Milk (산양유로 제조한 Feta 치즈의 이화학적 및 관능적 특성)

  • 강석남;박승용
    • Journal of Animal Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.293-306
    • /
    • 2006
  • We characterized physicochemical properties and examined the organoleptic and textural evaluations of Feta cheese made from goat's milk. Nutritional compositions of goat Feta cheese were fat 23.50%, protein 11.03% with moisture content of 59.54%. Cell numbers of lactic starter cultures in Feta cheese maintained from log 8.46 CFU/g and pH 5.76 during storage at 4℃ for 14 day's aging. The color of Feta cheese was whitish (L. 93.19) at after finishing brine salting, but became a little yellowish(b. 3.52) (a. -0.71). For texture profile analysis of goat Feta cheese, hardness, fracturability springness, and cohesiveness seemed to be week, but adhesiveness gumminess, chewiness, and resilience were enhanced as aging times extended to 14days, resulted in the overall textural properties was to be superior to control cheese(commercial Mozzarella cheese). Organoleptic evaluations were examined based on the intensities and the preferences for flavour, tastes, texture and mouth feeling. saltiness, bitterness and acidity were stronger in the intensities than control cheese, but the preferences were enhanced by aging to be better than control cheese at 14 days and later on, however, the texture changed to be weaker in hardness and unpleasant in mouthfeel. The fatty acid compositions of Feta cheese analysed by Gas chromatography were saturated fatty acid 42.06%, monoenoic acids 29.67%, di-enoic acids 24.24%, tri-enoic acids 1.21%.