• Title/Summary/Keyword: Brightness Temperature

Search Result 450, Processing Time 0.031 seconds

High-brightness Phosphor-conversion White Light Source Using InGaN Blue Laser Diode

  • Ryu, Han-Youl;Kim, Dae-Hwan
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.415-419
    • /
    • 2010
  • A phosphor-conversion white light source is demonstrated using an InGaN-based blue laser diode (LD) and a yellow-emitting phosphor excited by the blue LD. The photometric and colorimetric properties of this blue-LD-based white light source are characterized. When injection current of the LD is 100 mA, luminous flux and luminous efficiency of the white light are found to be over 5 lm and 10 lm/W, respectively. When injection current is >90 mA, luminance is estimated to be larger than 10 Mcd/$cm^2$. In addition, color characteristics of the white light such as chromaticity coordinates, a correlated color temperature, and a color rendering index are found to be quite stable as current and temperature of the LD varies. The demonstrated LD-based white light source is expected to be used in high-brightness illumination applications with good color stability.

A study on urban heat islands over the metropolitan Seoul area, using satellite images (원격탐사기법에 의한 도시열섬 연구)

  • ;Lee, Hyoun-Young
    • Journal of the Korean Geographical Society
    • /
    • v.40
    • /
    • pp.1-13
    • /
    • 1989
  • The brightness temperature from NOAA AVHRR CH 4 images was examined for the metropolitan Seoul area, the capital city of Korea, to detect the characteristics of the urban heat island for this study. Surface data from 21 meteorological stations were compared with the brightness temperatures Through computer enhancement techniques, more than 20 heat islands could be recognized in South Korea, with 1 km spatii resolution at a scale of 1: 200, 00O(Fig. 3, 4 and 6). The result of the analysis of AVHRR CH 4 images over the metropolitan Seoul area can be summerized as follows (1) The pattern of brightness temperature distribution in the metropolitan Seoul area shows a relatively strong temperature contrast between urban and rural areas. There is some indication of the warm brightness temperature zone characterrizing built-up area including CBD, densely populated residential district and industrial zone. The cool brightness temperature is asociaed with the major hills such as Bukhan-san, Nam-san and Kwanak-san or with the major water bodies such as Han-gang, and reservoirs. Although the influence of the river and reservoirs is obvious in the brightness temperauture, that of small-scaled land use features such as parks in the cities is not features such as parks in the cities is not apperent. (2) One can find a linerar relationshop between the brightenss temperature and air temperature for 10 major cities, where the difference between two variables is larger in big cities. Though the coefficient value is 0.82, one can estimate that factors of the heat islands can not be explained only by the size of the cities. The magnitude of the horizontal brightness temperature differences between urban and rural area is found to be greater than that of horizontal air temperature difference in Korea. (3) Also one can find the high heat island intensity in some smaller cities such as Changwon(won(Tu-r=9.0$^{\circ}$C) and Po-hang(Tu-r==7.1$^{\circ}$~)T. he industrial location quotient of Chang-won is the second in the country and Po-hang the third. (4) A comparision of the enhanced thermal infrared imageries in 1986 and 1989, with the map at a scale of 1:200, 000 for the meotropolitan Seoul area showes the extent of possible urbanization changes. In the last three years, the heat islands have been extended in area. zone characterrizing built-up area including (5) Although the overall data base is small, the data in Fig. 3 suggest that brightness tempeautre could ge utilized for the study on the heat island characteristics. Satellite observations are required to study and monitor the impact of urban heat island on the climate and environment on global scale. This type of remote sensing provides a meams of monitoring the growth of urban and suburban aeas and its impact on the environment.

  • PDF

Non-chlorine Bleaching of Oak Kraft Pulp by Ozone (오존을 이용한 신갈나무 크라프트펄프의 무염소표백)

  • 김동호;백기현
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.2
    • /
    • pp.36-45
    • /
    • 1997
  • Newly bleaching sequence using oxygen, ozone and hydrogen peroxide has introduced to avoid pollution hazards from chlorinated organic compounds, because chlorine dioxide substitution bleaching was produced a little chlorinated organic substance. Oxygen-type chemicals replaced for chlorine has attracted much research attention. Bleachability of ozone was improved at low temperature and high pulp consistency. In third bleaching followed OZ bleaching, addition of O2 and NaBH4 in alkali extraction was effective than only alkali extraction. Bleachability of pulps in ozone bleaching(Z) was improved at higher consistency and lower temperature The addition O2 and NaBH4 in alkali extraction after OZ bleaching sequence improved brightness, when compared to those obtained by only alkaline extraction. Pulps bleached by ECF bleaching sequences such as OZEoD and OZEopD was obtained by 90% ISO brightness. The brightness of pulp bleached by TCF sequences with the ozone dosage of 1.6% was approached to target brightness (88~90%ISO). Pulps bleached Z stage combined bleaching sequence was reduced the viscosity to a little greater extent. However, physical properties of pulps was not great different compared to those bleached by conventional bleaching sequences. A pollution index of bleaching effluente by ozone combined bleaching sequences was lower than by conventional bleaching sequence, but somewhat higher than multistage bleaching sequences combined C/D stage.

  • PDF

Brightness Temperature Retrieval using Direct Broadcast Data from the Passive Microwave Imager on Aqua Satellite

  • Kim, Seung-Bum;Im, Yong-Jo;Kim, Kum-Lan;Park, Hye-Sook;Park, Sung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.1
    • /
    • pp.47-55
    • /
    • 2004
  • We have constructed a level-1 processor to generate brightness temperatures using the direct-broadcast data from the passive microwave radiometer onboard Aqua satellite. Although 50-minute half-orbit data, called a granule, are being routinely produced by global data centers, to our knowledge, this is the first attempt to process 10-minute long direct-broadcast (DB) data. We found that the processor designed for a granule needs modification to apply to the DB data. The modification includes the correction to path number, the selection of land mask and the manipulation of dummy scans. Pixel-to-pixel comparison with a reference indicates the difference in brightness temperature of about 0.2 K rms and less than 0.05 K mean. The difference comes from the different length of data between 50-minute granule and about 10-minute DB data. In detail, due to the short data length, DB data do not always have correct cold sky mirror count. The DB processing system is automated to enable the near-real time generation of brightness temperatures within 5 minutes after downlink. Through this work, we would be able to enhance the use of AMSR-E data, thus serving the objective of direct-broadcast.

Satellite Image Analysis of Low-Level Stratiform Cloud Related with the Heavy Snowfall Events in the Yeongdong Region (영동 대설과 관련된 낮은 층운형 구름의 위성관측)

  • Kwon, Tae-Yong;Park, Jun-Young;Choi, Byoung-Cheol;Han, Sang-Ok
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.577-589
    • /
    • 2015
  • An unusual long-period and heavy snowfall occurred in the Yeongdong region from 6 to 14 February 2014. This event produced snowfall total of 194.8 cm and the recordbreaking 9-day snowfall duration in the 103-year local record at Gangneung. In this study, satellite-derived cloud-top brightness temperatures from the infrared channel in the atmospheric window ($10{\mu}m{\sim}11{\mu}m$) are examined to find out the characteristics of clouds related with this heavy snowfall event. The analysis results reveal that a majority of precipitation is related with the low-level stratiform clouds whose cloud-top brightness temperatures are distributed from -15 to $-20^{\circ}C$ and their standard deviations over the analysis domain (${\sim}1,000km^2$, 37 satellite pixels) are less than $2^{\circ}C$. It is also found that in the above temperature range precipitation intensity tends to increase with colder temperature. When the temperatures are warmer than $-15^{\circ}C$, there is no precipitation or light precipitation. Furthermore this relation is confirmed from the examination of some other heavy snowfall events and light precipitation events which are related with the low-level stratiform clouds. This precipitation-brightness temperature relation may be explained by the combined effect of ice crystal growth processes: the maximum in dendritic ice-crystal growth occurs at about $-15^{\circ}C$ and the activation of ice nuclei begins below temperatures from approximately -7 to $-16^{\circ}C$, depending on the composition of the ice nuclei.

The Study on the Oceanic Surface Wind Retrieval using TRMM Microwave Imager (TRMM TMI를 이용한 해상풍 추정에 관한 연구)

  • Kim, Young-Seup;Hong, Gi-Man
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.47-53
    • /
    • 2002
  • Ocean surface wind speed was estimated using TRMM (Tropical Rainfall Measurement Mission) TMI (TRMM Microwave/Imager) data. It is used the TRMM TMI brightness temperature and National Data Buoy Center's buoy winds speed dataset near North-America to estimate by the algorithm of the ocean surface wind speed retrieval over North America. Comparing with the buoy data by D-matrix equation, the result that RMSE, BIAS, and correlation coefficient are 2.19 $ms^{-1}$, 1.10 $ms^{-1}$, and 0.81, respectively. Therefore the estimated oceanic surface wind speed by TRMM TMI brightness temperature data show that available to ocean research over upper ocean.

  • PDF

Radiative Transfer Simulation of Microwave Brightness Temperature from Rain Rate

  • Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.59-71
    • /
    • 2002
  • Theoretical models of radiative transfer are developed to simulate the 85 GHz brightness temperature (T85) observed by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer as a function of rain rate. These simulations are performed separately over regions of the convective and stratiform rain. TRMM Precipitation Radar (PR) observations are utilized to construct vertical profiles of hydrometeors in the regions. For a given rain rate, the extinction in 85 GHz due to hydrometeors above the freezing level is found to be relatively weak in the convective regions compared to that in the stratiform. The hydrometeor profile above the freezing level responsible for the weak extinction in convective regions is inferred from theoretical considerations to contain two layers: 1) a mixed (or mixed-phase) layer of 2 km thickness with mixed-phase particles, liquid drops and graupel above the freezing level, and 2) a layer of graupel extending from the top of the mixed layer to the cloud top. Strong extinction in the stratiform regions is inferred to result from slowly-falling, low-density ice aggregates (snow) above the freezing level. These theoretical results are consistent with the T85 measured by TMI, and with the rain rate deduced from PR for the convective and stratiform rain regions. On the basis of this study, the accuracy of the rain rate sensed by TMI is inferred to depend critically on the specification of the convective or stratiform nature of the rain.

A Synthesis Ratio of Light Emitting Diodes and Quantization Noise for Increasing Brightness of Head-up Displays (헤드업 디스플레이 휘도 증가를 위한 LED 합성비율과 영상잡음에 대한 연구)

  • Chi, Yongseok
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.816-823
    • /
    • 2016
  • This paper studies a light emitting diode(LED) overlapping method of a head-up display that consists of a digital micro device(DMD) panel and a red, green, blue LED in order to increase the brightness of display system and optical output power. This optimization overlapping method removes a quantization noise which occur due to LED overlapping too excessive and stabilizes the junction temperature of LED. In order to reduce junction temperature of LED, the a correlation between a green duty and LED overlapping ratio is studied. Throughout this study, the brightness of head-up display exhibited high increasement ratio of luminance around 33.3 percent at 39 percent overlapping method.

The Detection of Yellow Sand with Satellite Infrared bands

  • Ha, Jong-Sung;Kim, Jae-Hwan;Lee, Hyun-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.403-406
    • /
    • 2006
  • An algorithm for detection of yellow sand aerosols has been developed with infrared bands. This algorithm is a hybrid algorithm that has used two methods combined. The first method used the differential absorption in brightness temperature difference between $11{\mu}m\;and\;12{\mu}m\;(BTD1)$. The radiation at $11{\mu}m$ is absorbed more than at $12{\mu}m$ when yellow sand is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The second method uses the brightness temperature difference between $3.7{\mu}m\;and\;11{\mu}m(BTD2)$. This technique is sensitive to dust loading, which the BTD2 is enhanced by reflection of $3.7{\mu}m$ solar radiation. First the Principle Component Analysis (PCA), a form of eigenvector statistical analysis from the two methods, is performed and the aerosol pixel with the lowest 10% of the eigenvalue is eliminated. Then the aerosol index (AI) from the combination of BTD 1 and 2 is derived. We applied this method to Multi-functional Transport Satellite-l Replacement (MTSAT-1R) data and obtained that the derived AI showed remarkably good agreements with Ozone Mapping Instrument (OMI) AI and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth.

Electroluminescent and Accelerated Aging Properties of ZnS:Cu Phosphor (ZnS:Cu 형광체의 전계 발광 및 가속열화 특성)

  • 이종찬;황명근;박대희
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.13-16
    • /
    • 2001
  • In this paper, the emission and aging properties of ZnS:Cu electroluminescent device were experiment respectively at room temperature and 7$0^{\circ}C$ relative humidity 100%. ZnS:Cu and BaTiO$_3$were respectively used for phosphor and dielectric. While AC 100V on 400Hz frequency were applied to the devices at room temperature and 70$_3$relative humidity 100%, the change of brightness were measured and compared. The surface of aged devices were investigated by scanning electron microscope. With the continuously operated environment of room temperature and 7$0^{\circ}C$ relative humidity 100%, the decay time were measured and the dark spot and aging status on the surface of the device were investigated. ZnS:Cu electroluminescent properties were deteriorated by the Increased temperature and humidity. Also the deteriorated properties were confirmed by the brightness and surface chanties of device, and the aging mechanism from the simulation on sulfur vacancy and deep tracts density.

  • PDF