• Title/Summary/Keyword: Bridge structure

Search Result 1,743, Processing Time 0.028 seconds

The modal characteristics of non-uniform multi-span continuous beam bridges

  • Shi, Lu-Ning;Yan, Wei-Ming;He, Hao-Xiang
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.997-1017
    • /
    • 2014
  • According to the structure characteristics of the non-uniform beam bridge, a practical model for calculating the vibration equation of the non-uniform beam bridge is given and the application scope of the model includes not only the beam bridge structure but also the non-uniform beam with added masses and elastic supports. Based on the Bernoulli-Euler beam theory, extending the application of the modal perturbation method and establishment of a semi-analytical method for solving the vibration equation of the non-uniform beam with added masses and elastic supports based is able to be made. In the modal subspace of the uniform beam with the elastic supports, the variable coefficient differential equation that describes the dynamic behavior of the non-uniform beam is converted to nonlinear algebraic equations. Extending the application of the modal perturbation method is suitable for solving the vibration equation of the simply supported and continuous non-uniform beam with its arbitrary added masses and elastic supports. The examples, that are analyzed, demonstrate the high precision and fast convergence speed of the method. Further study of the timesaving method for the dynamic characteristics of symmetrical beam and the symmetry of mode shape should be developed. Eventually, the effects of elastic supports and added masses on dynamic characteristics of the three-span non-uniform beam bridge are reported.

Dynamic Evaluation of Bridge Mounted Structures (교량상부에 부착된 구조물의 동적거동해석)

  • Kim, Dong-Joo;Lee, Wan-Soo;Yang, Jong-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.324-327
    • /
    • 2011
  • The design requirement for ground mounted sign structures are fairly well defined in the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaries, and Traffic Signals and consists of applying an equivalent pseudo-dynamic loading to account for the dynamic effects of wind loads and ignores the dynamic effect due to moving vehicle loads. This design approach, however, should not be applied to the design of bridge mounted sign structures because ignoring the dynamic effects of the moving vehicle loads may produce non-conservative results, since the stiffness of the bridge structure can greatly influence the behavior. Not enough information is available in the literatures which provide guide lines to include the influence of moving vehicles in the design of the bridge mounted sign structures. This paper describes a theoretical methodology, Bridge-Vehicle Interaction Element, which can be utilized to account for the dynamic effect of moving vehicles. A case study is also included where this methodology was successfully applied. It was concluded that the bridge-vehicle interaction finite element developed can provide a more accurate representation of the behavior of bridge mounted sign structures. The result of these analysis enabled development of simple and effective retrofitting scheme for the existing support system of bridge-mounted-structure.

  • PDF

Evaluation of Seismic Performance for Bridge Structure Using Capacity Spectrum Method (역량스펙트럼법을 이용한 교량의 내진성능평가)

  • 이창수;김승익;김현겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.75-80
    • /
    • 2000
  • Evaluation method of seismic performance has mainly used elastic spectrum analysis. This method has simplicity of analysis but deficiency of accuracy. And evaluation method of seismic performance using inelastic dynamic analysis reflects accurately inelasticity of material but hardly reflects site effects. This study suggested evaluation scheme of seismic performance for bridge structure using capacity spectrum method applied inelastic static analysis and standard design response spectrum of Korea Standard Specification for Highway Bridge. Two results, capacity spectrum method and inelastic dynamic analysis method, are very similar. As a result, this study appropriately supply both simplicity of analysis and accuracy of result.

  • PDF

Coupled buffeting response analysis of long-span bridges by the CQC approach

  • Ding, Quanshun;Chen, Airong;Xiang, Haifan
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.505-520
    • /
    • 2002
  • Based on the modal coordinates of the structure, a finite-element and CQC (complete quadratic combination) method for analyzing the coupled buffeting response of long-span bridges is presented. The formulation of nodal equivalent aerodynamic buffeting forces is derived based on a reasonable assumption. The power spectral density and variance of nodal displacements and elemental internal forces of the bridge structure are computed using the finite-element method and the random vibration theory. The method presented is very efficient and can consider the arbitrary spectrum and spatial coherence of natural winds and the multimode and intermode effects on the buffeting responses of bridge structures. A coupled buffeting analysis of the Jiangyin Yangtse River Suspension Bridge with 1385 in main span is performed as an example. The results analyzed show that the multimode and intermode effects on the buffeting response of the bridge deck are quite remarkable.

Study on Disaster Prevention System for Long Span Bridge over the Sea (장대해상교량의 방재시스템 구축에 관한 연구)

  • Kong, Byung-Seung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.59-64
    • /
    • 2009
  • Bridge types such as the suspension bridges and the cable stayed bridges maintained by cables present the dangerous possibility of a ship running through the bottom of the bridge. Due to hangers and main cables in the upper structural system, the bridge is also susceptible to disasters. However, these cable bridges are usually used for long span bridges over the sea. This structure is relatively more exposed to disasters, such as wind, hail, and earthquake, than other structures. This structure also has the potential to cause car accidents on account of the poor visibility due to foggy conditions. If a fire breaks out because of a car accident due to wind, a car explosion will likely occur.

Bridge Health Monitoring with Consideration of Environmental Effects

  • Kim, Yuhee;Kim, Hyunsoo;Shin, Soobong;Park, Jong-Chil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.648-660
    • /
    • 2012
  • Reliable response measurements are extremely important for proper bridge health monitoring but incomplete and unreliable data may be acquired due to sensor problems and environmental effects. In the case of a sensor malfunction, parts of the measured data can be missing so that the structural health condition cannot be monitored reliably. This means that the dynamic characteristics of natural frequencies can change as if the structure is damaged due to environmental effects, such as temperature variations. To overcome these problems, this paper proposes a systematic procedure of data analysis to recover missing data and eliminate the environmental effects from the measured data. It also proposes a health index calculated statistically using revised data to evaluate the health condition of a bridge. The proposed method was examined using numerically simulated data with a truss structure and then applied to a set of field data measured from a cable-stayed bridge.

A comparative study of numerical methods for fluid structure interaction analysis in long-span bridge design

  • Morgenthal, Guido;McRobie, Allan
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.101-114
    • /
    • 2002
  • Both a Finite Volume and a Discrete Vortex technique to solve the unsteady Navier-Stokes equations have been employed to study the air flow around long-span bridge decks. The implementation and calibration of both methods is described alongside a quasi-3D extension added to the DVM solver. Applications to the wind engineering of bridge decks include flow simulations at different angles of attack, calculation of aerodynamic derivatives and fluid-structure interaction analyses. These are being presented and their specific features described. If a numerical method shall be employed in a practical design environment, it is judged not only by its accuracy but also by factors like versatility, computational cost and ease of use. Conclusions are drawn from the analyses to address the question of whether computer simulations can be practical design tools for the wind engineering of bridge decks.

The Design and Construction of the Anchorage of Yi Sun-Sin Grand Bridge (이순신대교 앵커리지 설계-시공사례)

  • An, Ik-Kyun;Kim, Kyung-Taek;Seo, Young-Hwa
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.14-25
    • /
    • 2010
  • The Yi Sun-Sin grand bridge is the suspension bridge which connects Myodo and Gwangyang. It is over the main navigation channel of Gwangyang Harbor. South anchorage(AN1, Myodo side) of the bridge is designed as rock anchored type. It sustains using the resistance of the underground rock's mass in Myodo. As this type of anchorage can minimize the exposure of the structure, It is economically efficient and environmentally friendly. North anchorage (AN2, Gwangyang side) is designed as the gravity type. This anchorage is 68 meters in diameter and use its own weight to support. Instead of normal rectangular diaphragm wall, the circular shape diaphragm wall is adopted to the north anchorage. It doesn't need to use internal temporary facilities, so it can significantly improve the constructability of the structure.

  • PDF

Seismic performances of steel reinforced concrete bridge piers

  • Deng, Jiangdong;Liu, Airong;Yu, Qicai;Peng, Guoxing
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.661-677
    • /
    • 2016
  • The quasi static test of the steel reinforced concrete (SRC) bridge piers and rigid frame arch bridge structure with SRC piers was conducted in the laboratory, and the seismic performance of SRC piers was compared with that of reinforced concrete (RC) bridge piers. In the test, the failure process, the failure mechanism, hysteretic curves, skeleton curves, ductility coefficient, stiffness degradation curves and the energy dissipation curves were analyzed. According to the $M-{\Phi}$ relationship of fiber section, the three-wire type theoretical skeleton curve of the lateral force and the pier top displacement was proposed, and the theoretical skeleton curves are well consistent with the experimental curves. Based on the theoretical model, the effects of the concrete strength, axial compression ratio, slenderness ratio, reinforcement ratio, and the stiffness ratio of arch to pier on the skeleton curve were analyzed.

Seismic performance of a rocking bridge pier substructure with frictional hinge dampers

  • Cheng, Chin-Tung;Chen, Fu-Lin
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.501-516
    • /
    • 2014
  • The rocking pier system (RPS) allows the columns to rock on beam or foundation surfaces during the attacks of a strong earthquake. Literatures have proved that seismic energy dissipated by the RPS through the column impact is limited. To enhance the energy dissipation capacity of a RPS bridge substructure, frictional hinge dampers (FHDs) were installed and evaluated by shaking table tests. The supplemental FHDs consist of two brass plates sandwiched by three steel plates. The strategy of self-centering design is to isolate the seismic energy by RPS at the columns and then dissipate the energy by FHDs at the bridge deck. Component tests of FHD were first conducted to verify the friction coefficient and dynamic characteristic of the FHDs. In total, 32 shaking table tests were conducted to investigate parameters such as wave forms of the earthquake (El Centro 1940 and Kobe 1995) and normal forces applied on the friction dampers. An analytical model was also proposed to compare with the tested damping of the bridge sub-structure with or without FHDs.