• Title/Summary/Keyword: Bridge length

Search Result 682, Processing Time 0.026 seconds

The Parameter Study of Serviceability Review of End Track on Railway Bridge installed Concrete Slab Track (콘크리트궤도 부설 교량의 단부 사용성 검토를 위한 매개변수 연구)

  • Sung, Deok-Yong;Kim, Young-Ha;Park, Yong-Gul;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.117-124
    • /
    • 2008
  • Construction of concrete slab track is trending to increase gradually in national and international for reduction in track maintenance cost and secure of ride comfort. However, in case of railway bridge installed concrete slab track, the serviceability review of end deck should be performed for reducing the maintenance cost of track. The serviceability review of track contains that the compression force which is occurred on fastener of end bridge should be smaller than the compression force causing the deformation limit of elastic pad and the uplift force which is occurred on fastener of end abutment should be smaller than initial fastening force. Therefore, this study calculated the deflection and end rotation of the railway bridge according to the span length and stiffness of railway bridge and estimated the compression force and uplift force which are occurred on the track of end bridge using the finite element method. This study indicated the several diagrams that are contained the correlation between the behaviour of the track and the behaviour of the railway bridge. As a result, to reduce the end rotation of the railway bridge is very efficient to increase the height of railway deck.

  • PDF

An Evaluation Study on the Dynamic Stability of High Speed Railway Bridges (고속철도교량의 동적안정성 평가연구)

  • Bang, Myung-Seok;Chung, Guang-Mo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.43-49
    • /
    • 2012
  • In the design of high speed railway bridges is important a impact factor as a tool of assessing the dynamic capacitys of bridges. However, the impact factor(or dynamic amplification factor, DAF) of high speed railway bridges may essentially be changeable because the dynamic response is affected by the long train length(380 m), number of axles and high speed velocity(300 km/h)(Korea Train eXpress: KTX). Therefore, on this study will be examined the dynamic capacity and stability of the typical PSC Box Girder of high speed railway bridge. At first, the static/dynamic analysis is performed considering the axle load line of KTX based upon existing references. Additionally, the KTX moving load is transformed into the dynamic time series load for conducting various parameter studies like axle length, analytical time increment, velocity of KTX. The time history analysis is repeatedly performed to get maximum dynamic responce by varying axle load length, analytical time increment, velocity of KTX. The study shows that dynamic analysis has resonable results with optimal axle load length(0.6 m) and time increment(0.01 sec.) and maximum DAF and dynamic resonance happens at 270 km/h velocity of KTX.

The Analysis About The Yield Strength Improvement of The Silicon Low-pressure Sensor (저압용 실리콘 압력센서의 내압 특성 향상에 관한 해석)

  • Lee, Seung-Hwan;Kim, Hyeon-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.3
    • /
    • pp.18-24
    • /
    • 2011
  • This paper presents that the yield strength of the pressure sensor with a double boss diaphragm structure can be improved as the grooves are formed at the corner of the diaphragm bridge. Generally the boss structure is widely used for the low-pressure sensor, of which the sensitivity is not enough in case of the small diaphragm size limited by a chip size constraint. The double boss structure pressure sensor exhibits a great sensitivity, but suffers from the low yield strength problem due to the high stress occurred at the corner of the diaphragm bridge to be limited in the operating range. ANSYS simulation is performed by changing the length of the groove from 0.5${\mu}m$ to 10${\mu}m$ at the corner of the diaphragm bridge of the double boss structure pressure sensor. The maximum stress is analyzed at the corner of the diaphragm bridge, the edge of the diaphragm bridge, and the position of the piezoresistive sensor. Consequently, in case the length of the groove from the edge of the diaphragm is 6${\mu}m$ or greater, the stress occurred in the corner of the bridge is less than the stress acting on a piezoresistive element.

A Study on Condition Assessment of the General National Road Bridge Deck (일반국도상 교량 바닥판의 상태 현황분석 연구)

  • Oh, Kwang Chin;Lee, Jun Gu;Shin, Ju Yeoul;Chang, Buhm Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.93-101
    • /
    • 2012
  • Bridge deck has a role in a comfortable and safe passage of vehicles. At the same time, it preserves upper structure against the abrasion and shearing due to impact of traffic loads in bridges or has a role to protect the plate from off adverse effect of climatic process as rain, chemicals. Currently, the total number of inspected bridges is 6,248 in the general national road and to maintain effectively, Introduction of GPR system mounted in the vehicle has been considered. In this research, the comparison and analysis of bridge deck condition on general national road has been performed with major variations of superstructure type, span lengths, located region and ages by using 'the current status of road bridge and tunnel' that is provided by MLTM(Ministry of Land, Transport and Maritime Affairs). As a result, Condition assessment grade, superstructure type, age and length were derived as a major factor to determine priority for the condition assessment.

Experimental Study on Seismic Performance Evaluation of Piers in Seohae Grand Bridge (세해대교 PSM교 교각의 내진성능 평가에 관한 실험적 연구)

  • 손혁수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.319-326
    • /
    • 2000
  • The purpose of this study is to evaluate seismic performance of reinforced concrete pier columns in Seohae Ground Bridge. Since the bridge was designed before preparing the seismic design specification the bridge columns of hollow hexagonal section were designed and constructed with insufficient seismic reinforcement details such as longitudinal and transverse reinforcement lap-splices. In order to take the necessary measures to improve its seismic performance experimental study was performed by small-scale test for the bridge columns, From the quasi-static test for small-scale column specimens the lap-splices were not critical for overall behavior of the column if sufficient lap-splice-length was provided. The test results of failure mode effective stiffness ductility and equivalent viscous damping ratio are presented.

  • PDF

Impact study for multi-girder bridge based on correlated road roughness

  • Liu, Chunhua;Wang, Ton-Lo;Huang, Dongzhou
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.259-272
    • /
    • 2001
  • The impact behavior of a multigirder concrete bridge under single and multiple moving vehicles is studied based on correlated road surface characteristics. The bridge structure is modeled as grillage beam system. A 3D nonlinear vehicle model with eleven degrees of freedom is utilized according to the HS20-44 truck design loading in the American Association of State Highway and Transportation Officials (AASHTO) specifications. A triangle correlation model is introduced to generate four classes of longitudinal road surface roughness as multi-correlated random processes along deck transverse direction. On the basis of a correlation length of approximately half the bridge width, the upper limits of impact factors obtained under confidence level of 95 percent and side-by-side three-truck loading provide probability-based evidence for the evaluation of AASHTO specifications. The analytical results indicate that a better transverse correlation among road surface roughness generally leads to slightly higher impact factors. Suggestions are made for the routine maintenance of this type of highway bridges.

Serviceability reliability analysis of cable-stayed bridges

  • Cheng, Jin;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.609-630
    • /
    • 2005
  • A reliability analysis method is proposed in this paper through a combination of the advantages of the response surface method (RSM), finite element method (FEM), first order reliability method (FORM) and the importance sampling updating method. The accuracy and efficiency of the method is demonstrated through several numerical examples. Then the method is used to estimate the serviceability reliability of cable-stayed bridges. Effects of geometric nonlinearity, randomness in loading, material, and geometry are considered. The example cable-stayed bridge is the Second Nanjing Bridge with a main span length of 628 m built in China. The results show that the cable sag that is part of the geometric nonlinearities of cable-stayed bridges has a major effect on the reliability of cable-stayed bridge. Finally, the most influential random variables on the reliability of cable-stayed bridges are identified by using a sensitivity analysis.

Nose-Deck Interaction in ILM Bridge Proceeding with Tapered Sectional Launching Nose (변단면 압출 추진코와 ILM교량 상부구조와의 상호작용)

  • 안태욱;김광양;이환우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.455-462
    • /
    • 2004
  • The ILM(incremental launching method) bridge, which is one of PS(prestressed) concrete bridge construction methods is widely adopted in Korea owing to its effectiveness for the quality control in construction. The purpose of this study is to analyze the structural behavior of ILM bridge proceeding with tapered sectional launching nose. This study presents basic technical materials to achieve the optimum design for superstructure and launching nose of ILM bridge. First this study introduces an equation to analyze the interaction between launching nose and superstructure. In this process, relative length, weight, and flexural stiffness between launching nose and superstructure are considered as investigating parameters. Second, the effects of superstructure resulting from these parameters is estimated analyzed by using the induced equations.

  • PDF

3 DOFs bridge-vessel collision model considering with rotation behaviors of the vessel (선박의 회전거동을 고려한 3자유도 충돌모델)

  • Lee, Gye-Hee;Lee, Seong-Lo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.380-385
    • /
    • 2008
  • 3 DOFs model for the collision analysis of a bridge super-structure and a super-structure of the navigating vessels were proposed and analyzed. The collision event between the super-structure of vessel and the super-structure of bridge are different from the normal collision event that collided at sub-structure of bridge. Because of its moment arm, the stability force of vessel could affect to the collision behaviors. To consider this effect, 3 DOFs model including two translation DOFs and one rotational DOF were introduced. The restoration forces of the collision system were considered as nonlinear springs. The equations of motion were derived if form of differential equations and numerically solved by 4th order Runge-Kutta method. The accuracy and the feasibility of this model were verified by the numerical example with parameter of moment arm length.

  • PDF

Completing the Seohae Grand Bridge Construction Supervision (서해대교 감리를 마치며)

  • 전준수
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.1
    • /
    • pp.23-26
    • /
    • 2001
  • Seohae Grand Bridge is a part of the new West Coast Highway(353km) under construction, which connects Inchon and Mokpo. It is the longest bridge in Korea (7.31 km), and has 97 spans of 60m each precast segmental approach bridges, 2 main spans of 165m each free cantilever segmental bridge(500m), and 1 stay cable bridge of 990m In total length. During the seven year long construction period, many new construction technologies and methods were utilized for the first time in Korea, and gave invaluable opportunities to experience and master these in completing the project on time with safety and precision. I am proud of being a member of this project, and wish to express deep appreciations to those who participated in the project.

  • PDF