• Title/Summary/Keyword: Bridge defect

Search Result 89, Processing Time 0.023 seconds

A Korean Girl with Campomelic Dysplasia caused by a Novel Nonsense Mutation within the SOX9 Gene

  • Ko, Jung Min;Hah, J.-Hun;Kim, Suk-Wha;Cho, Tae-Joon;Kim, Gu-Hwan;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.9 no.2
    • /
    • pp.89-92
    • /
    • 2012
  • Campomelic dysplasia (CMD) is a rare, often lethal, genetic disorder characterized by multiple congenital anomalies and abnormal development of the reproductive organs in males. Mutations in the SOX9 gene are known to cause CMD. We present a Korean CMD girl with a normal 46,XX karyotype and a female reproductive organ phenotype. She was born at 2.35 kg at 38 weeks of gestation and showed characteristic phenotypes, including cleft palate, micrognathia, hypertelorism, flat nasal bridge, congenital bowing of limbs, hypoplastic scapulae, deformed pelvis, and 11 pairs of ribs. She also had an atrioseptal defect of the heart and marked laryngotracheomalacia requiring tracheostomy and tracheopexy. SOX9 mutation analysis revealed the presence of a novel nonsense mutation, $p.Gln369^*$, and the patient was genetically confirmed to have CMD. Although she showed marked failure to thrive and neurodevelopmental delay, she is now 40 months of age and is the only surviving patient with CMD in Korea.

Experimental study on hot-wire type air flow rate measurement system considering ambient temperature compensations (온도보상을 고려한 열선형 공기유량 측정시스템에 관한 실험적 연구)

  • 이민형;유정열;김사랑;고상근;윤준원;김동성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.62-75
    • /
    • 1991
  • The purpose of this study is to perform modelings and experiments to measure air flow rate using hot-wires and a CTA(Constant Temperature Anemometer). The flow rate can be obtained by measuring the heat loss of the hot-wire due to the variations of flow velocity when the hot-wire is maintained at uniform temperature. But the defect of this method is that the output signal changes not only by the flow rate but also by the ambient temperature. Thus, in the present study, a method which compensates the variations of the ambient temperature has been introduced to measure exact flow rate. To be more specific, the bridge circuit of the usual hot-wire anemometer system has been modified in such a way that a temperature resistance sensor and a variable resistance are placed in one of the legs to compensate the different temperature coefficients of both the hot-wire and the temperature compensating resistance for flow velocity or for flow mass up to the flow temperature of 50 .deg.C. Comparing the modeling and experimental results, it has been shown that the compensating point differs as the flow rate varies. Therefore, optimum compensation points are sought to construct the circuit. The present modeling and experimental results may be applied to the design of actual air flow meters for automobiles.

  • PDF

Determination of plastic hinge properties for static nonlinear analysis of FRP-strengthened circular columns in bridges

  • Amiri, Gholamreza Ghodrati;Jahromi, Azadeh Jaberi;Mohebi, Benyamin
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.435-455
    • /
    • 2012
  • In the recent years, rehabilitation of structures, strengthening and increasing the ductility of them under seismic loads have become so vital that many studies has been carried out on the retrofit of steel and concrete members so far. Bridge piers are very important members concerning rehabilitation, in which the plastic hinging zone is very vulnerable. Pier is usually confined by special stirrups predicted in the design procedure; moreover, fiber-reinforced polymers (FRP) jackets are used after construction to confine the pier. FRP wrapping of the piers is one of the most effective ways of increasing moment and ductility capacity of them, which has a growing application due to its relative advantages. In many earthquake-resistant bridges, reinforced concrete columns have a major defect which could be retrofitted in different ways like using FRP. After rehabilitation, it is important to check the strengthening adequacy by dynamic nonlinear analysis and precise modeling of material properties. If the plastic hinge properties are simplified for the strengthened members, as the simplified properties which FEMA 356 proposes for non-strengthened members, static nonlinear analysis could be performed more easily. Current paper involves this matter and it is intended to determine the plastic hinge properties for static nonlinear analysis of the FRP-strengthened circular columns.

A method to reject noise signals in partial discharge signals of turbine generator (터빈 발전기의 부분방전 신호 중 노이즈 제거 방법)

  • Park, Y.H.;Park, P.G.;Kim, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.240-242
    • /
    • 2005
  • It is well known that the PD (Partial Discharge) signals are generated if insulators have some defects such as voids in electrical facility and various PD detection methods are developed for preventing electrical troubles. So, an interest for the PD signals is higher and higher according to the high concern for the defects detection method of the aging electrical facility. When the equipment to detect PD signals installed at site and it works, a lot of noises flow in the equipment from surrounding situation and it will be mixed with original PD waveform. So we can not get the desired PD waveform. Therefore, there are many trial to reject or suppress the noise from the PD signals from long times ago. The greater of them used the hardware such as bridge circuits and frequency filters to suppress the noise. This paper proposed a novel noise rejection method in acquired data from PD detection equipment. The noise has the irregular phase and higher signal level than real PD, and noise decision is performed after inspection of pulse distribution in ${\Phi}$-q-n graph of acquired data from PD detection equipments. By experimental results on high voltage electric equipments, it is shown that proposed method has good performance. It is expected that this noise rejection technology is useful in numeric calculation and trend management of PD level.

  • PDF

Detection of Manufacturing Defects in Stiffness of CFTA Girder using Static Loading (정적 시험을 사용한 CFTA거더의 제조시 강성 결함 탐색)

  • Kim, Doo-Kie;Alfahdawi, Nathem;Cui, Jintao;Park, Kyung-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.109-116
    • /
    • 2012
  • This paper presents a study on the nonlinear behavior of an innovative bridge girder made from concrete-filled and tied tubular steel arch (CFTA) under static loading. Manufacturing of the CFTA girder may have defects which may highly affect the symmetry and performance of the structure. A simple method is proposed by using stiffness extracted from static test data to detect manufacturing defects of the CFTA girder. A three-dimensional finite element model was used in the numerical analysis in order to verify the method. The proposed method was experimentally validated through static tests of the CFTA girder. The application of the proposed method showed that it is effective in identifying invisible manufacturing defects of the CFTA girder, especially for mass production of a standard type in the factory.

Experimental study on seismic performance of partial penetration welded steel beam-column connections with different fillet radii

  • Ge, Hanbin;Jia, Liang-Jiu;Kang, Lan;Suzuki, Toshimitsu
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.851-865
    • /
    • 2014
  • Full penetration welded steel moment-resisting frame (SMRF) structures with welded box sections are widely employed in steel bridges, where a large number of steel bridges have been in operation for over fifty years in Japan. Welding defects such as incomplete penetration at the beam-column connections of these existing SMRF steel bridge piers were observed during inspection. Previous experiments conducted by the authors' team indicate that gusset stiffeners (termed fillets in this study) at the beam-web-to-column-web joint of the beam-column connections may play an important role on the seismic performance of the connections. This paper aims to experimentally study the effect of the fillet radius on seismic performance of the connections with large welding defects. Four specimens with different sizes of fillet radii were loaded under quasi-static incremental cyclic loading, where different load-displacement relations and cracking behaviors were observed. The experimental results show that, as the size of the fillet radius increases, the seismic performance of the connections can be greatly improved.

The Effects of Organic Contamination and Surface Roughness on Cylindrical Capacitors of DRAM during Wet Cleaning Process

  • Ahn, Young-Ki;Ahn, Duk-Min;Yang, Ji-Chul;Kulkarni, Atul;Choi, Hoo-Mi;Kim, Tae-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.15-19
    • /
    • 2011
  • The performance of the DRAM is strongly dependent on the purity and surface roughness of the TIT (TiN/Insulator/ TiN) capacitor electrodes. Hence, in the present study, we evaluate the effects of organic contamination and change of surface roughness on the cylindrical TIT capacitor electrodes during the wet cleaning process by various analytical techniques such as TDMS, AFM, XRD and V-SEM. Once the sacrificial oxide and PR (Photo Resist) are removed by HF, the organic contamination and surface oxide films on the bottom Ti/TiN electrode become visible. With prolonged HF process, the surface roughness of the electrode is increased, whereas the amount of oxidized Ti/TiN is reduced due to the HF chemicals. In the 80nm DRAM device fabrication, the organic contamination of the cylindrical TIT capacitor may cause defects like SBD (Storage node Bridge Defect). The SBD fail bit portion is increased as the surface roughness is increased by HF chemicals reactions.

Effect Of Bioceramic Grafts With And Without eptfe Membrane In Periodontal Osseous Defects In Dogs (생체요업재료와 차폐막의 복합사용후 골연하 결손부의 재생효과)

  • Lee, In-Kyung;Lee, Ki-Young;Han, Soo-Boo;Ko, Jae-Sung;Cho, Jeong-Sik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.47-67
    • /
    • 1996
  • The purpose of this study was to observe the effect of $Biocoral^R$ graft and bioglass 45S5 graft in combination with ePTFE membrane in periodontal osseous defects for new bone formation. Nine healthy dogs were used. Under general anesthesia, 3-wall defects were created on the mesial and distal surfaces of the maxillary right canines, the mesials of the maxillary right second premolars, the distals of the mandibular right canines and the mesials of the mandibular right third premolars. To induce periodontitis, a silicone rubber, $Provil^R$ light body, was injected under pressure into the defects. Ninety days later, $Provil^R$was removed and followed by thorough root planing. The followings were then applied in the mesial and distal defects of the maxillary right canines, the mesials of the maxillary right second premolars, the distals of the mandibular right canines and the mesials of the mandibular right third premolars by random selections : 1) ePTFE membrane only application, 2) $Biocoral^R$ graft, 3) $Biocoral^R$ graft and ePTFE membrane application, 4)Bioglass 45S5 graft, 5) Bioglass 45S5 graft and ePTFE membrane application. The membranes were removed 1 month later. The dogs were sacrified at 1, 2 and 3 months following the graft, and block sections were made, demineralized, embedded, stained and examined by light microscope and transmission electron microscope. On the sections from teeth treated with ePTFE membrane only, the defect demonstrated extensive connnective tissue and alveolar bone regeneration. The $Biocoral^R$ graft group demonstrated extensive bone regeneration compared with ePTFE membrane only group. In the $Biocoral^R$ graft plus ePTFE membrane group, regeneration of new alveolus and crest occurred within the defect. As the experimental period lengthened, bone regeneration was increased and bone bridge was formed among the graft particles. The but bioglass 45S5 graft group demonstrated extensive bone regeneration but the amount of new bone was less than that of the $Biocoral^R$ graft group. For the bioglass 45S5 graft plus ePTFE membrane group, the amount of new bone was also increased. As the experimental period lengthened, bone regeneration was increased. Multinucleated giant cells, fibroblasts and macrophages were observed. As the bone formation was increased, the number of such cells was decreased. In conclusion, the $Biocoral^R$ was found better than the bioglass 45S5 for new bone formation, and the use of ePTFE membrane alone or with $Biocoral^R$/bioglass 45S5 can be supported as potential methods of promoting bone formation.

  • PDF

Thermal Compression of Copper-to-Copper Direct Bonding by Copper films Electrodeposited at Low Temperature and High Current Density (저온 및 고전류밀도 조건에서 전기도금된 구리 박막 간의 열-압착 직접 접합)

  • Lee, Chae-Rin;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.102-102
    • /
    • 2018
  • Electronic industry had required the finer size and the higher performance of the device. Therefore, 3-D die stacking technology such as TSV (through silicon via) and micro-bump had been used. Moreover, by the development of the 3-D die stacking technology, 3-D structure such as chip to chip (c2c) and chip to wafer (c2w) had become practicable. These technologies led to the appearance of HBM (high bandwidth memory). HBM was type of the memory, which is composed of several stacked layers of the memory chips. Each memory chips were connected by TSV and micro-bump. Thus, HBM had lower RC delay and higher performance of data processing than the conventional memory. Moreover, due to the development of the IT industry such as, AI (artificial intelligence), IOT (internet of things), and VR (virtual reality), the lower pitch size and the higher density were required to micro-electronics. Particularly, to obtain the fine pitch, some of the method such as copper pillar, nickel diffusion barrier, and tin-silver or tin-silver-copper based bump had been utillized. TCB (thermal compression bonding) and reflow process (thermal aging) were conventional method to bond between tin-silver or tin-silver-copper caps in the temperature range of 200 to 300 degrees. However, because of tin overflow which caused by higher operating temperature than melting point of Tin ($232^{\circ}C$), there would be the danger of bump bridge failure in fine-pitch bonding. Furthermore, regulating the phase of IMC (intermetallic compound) which was located between nickel diffusion barrier and bump, had a lot of problems. For example, an excess of kirkendall void which provides site of brittle fracture occurs at IMC layer after reflow process. The essential solution to reduce the difficulty of bump bonding process is copper to copper direct bonding below $300^{\circ}C$. In this study, in order to improve the problem of bump bonding process, copper to copper direct bonding was performed below $300^{\circ}C$. The driving force of bonding was the self-annealing properties of electrodeposited Cu with high defect density. The self-annealing property originated in high defect density and non-equilibrium grain boundaries at the triple junction. The electrodeposited Cu at high current density and low bath temperature was fabricated by electroplating on copper deposited silicon wafer. The copper-copper bonding experiments was conducted using thermal pressing machine. The condition of investigation such as thermal parameter and pressure parameter were varied to acquire proper bonded specimens. The bonded interface was characterized by SEM (scanning electron microscope) and OM (optical microscope). The density of grain boundary and defects were examined by TEM (transmission electron microscopy).

  • PDF

A Point of Production System for Semiconductor Wafer Dicing Process (반도체 웨이퍼 다이싱 공정을 위한 생산시점 정보관리시스템)

  • Kim, In-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.55-61
    • /
    • 2009
  • This paper describes a point of production(POP) system which collects and manages real-time shop floor machining information in a wafer dicing process. The system are composed of POP terminal, line controller and network. In the configuration of the system, LAN and RS485 network are used for connection with the upper management system and down stratum respectively. As a bridge between POP terminal and server, a line controller is used. The real-time information which is the base of production management are collected from information resources such as machine, product and worker. The collected information are used for the calculation of optimal cutting condition. The collection of the information includes cutting speed, spout of pure water, accumulated count of cut in process for blade and wafer defect. In order to manage machining information in wafer dicing process, production planning information is delivered to the shop floor, and production result information is collected from the shop floor, delivered to the server and used for managing production plan. From the result of the system application, production progress status, work and non-working hour analysis for each machine, and wafer defect analysis are available, and they are used for quality and productivity improvements in wafer dicing process. A case study is implemented to evaluate the performance of the system.