• Title/Summary/Keyword: Bridge area

Search Result 748, Processing Time 0.028 seconds

Load-Carrying Capacity Assessment of Deteriorated Rural Bridge

  • Kim, Han-Joong;Kim, Jong-Ok;Yang, Seung-Ie
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.7
    • /
    • pp.36-45
    • /
    • 2002
  • Most of rural bridges have passed 30 years of age since they were built, which have to support unexpected overload caused by changed design load and excessive amount of transportation. For these rural bridges, repairs and replacements are needed. Even though there have been attempt to estimate the safety of existing bridges deteriorated with major defects, those approaches must rely on the observable damage and subsequent decisions are made subjectively. To avoid the high cost of rehabilitation, the bridge rating must correctly represent the present load-carrying capacity. Rating engineers use a methods such as Allowable Stress Design (ASD), Load Factor Design (LFD), and Load Resistance Factor Design (LRFD) to evaluate the bridge load carrying capacity. In this paper, the load rating methods are introduced, and it is illustrated how to use the load test data from literature survey. Load test is conducted to the bridge that was built 30 years ago in rural area. From load test results, new maintenance method is suggested instead of the bridge replacement.

Implementation of a High Efficiency Grid-Tied Multi-Level Photovoltaic Power Conditioning System Using Phase Shifted H-Bridge Modules

  • Lee, Jong-Pil;Min, Byung-Duk;Yoo, Dong-Wook
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.296-303
    • /
    • 2013
  • This paper proposes a high efficiency three-phase cascaded phase shifted H-bridge multi-level inverter without DC/DC converters for grid-tied multi string photovoltaic (PV) applications. The cascaded H-bridge topology is suitable for PV applications since each PV module can act as a separate DC source for each cascaded H-bridge module. The proposed phase shifted H-bridge multi-level topology offers advantages such as operation at a lower switching frequency and a lower current ripple when compared to conventional two level topologies. It is also shown that low ripple sinusoidal current waveforms are generated with a unity power factor. The control algorithm permits the independent control of each DC link voltage with a maximum power point for each string of PV modules. The use of the controller area network (CAN) communication protocol for H-bridge multi-level inverters, along with localized PWM generation and PV voltage regulation are implemented. It is also shown that the expansion and modularization capabilities of the H-bridge modules are improved since the individual inverter modules operate more independently. The proposed topology is implemented for a three phase 240kW multi-level PV power conditioning system (PCS) which has 40kW H-bridge modules. The experimental results show that the proposed topology has good performance.

Seismic assessment and retrofitting measures of a historic stone masonry bridge

  • Rovithis, Emmanouil N.;Pitilakis, Kyriazis D.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.645-667
    • /
    • 2016
  • The 750 m long "De Bosset" bridge in the Cephalonia Island of Western Greece, being the area with the highest seismicity in Europe, was constructed in 1830 by successive stone arches and stiff block-type piers. The bridge suffered extensive damages during past earthquakes, such as the strong M7.2 earthquake of 1953, followed by poorly-designed reconstruction schemes with reinforced concrete. In 2005, a multidisciplinary project for the seismic assessment and restoration of the "De Bosset" bridge was undertaken under the auspices of the Greek Ministry of Culture. The proposed retrofitting scheme combining soil improvement, structural strengthening and reconstruction of the deteriorated masonry sections was recently applied on site. Design of the rehabilitation measures and assessment of the pre- and post-interventions seismic response of the bridge were based on detailed in-situ and laboratory tests, providing foundation soil and structural material properties. In-situ inspection of the rehabilitated bridge following the strong M6.1 and M6.0 Cephalonia earthquakes of January 26th and February 3rd 2014, respectively, revealed no damages or visible defects. The efficiency of the bridge retrofitting is also proved by a preliminary performance analysis of the bridge under the recorded ground motion induced by the above earthquakes.

Safety Evaluation of the Settlement Amount of the Bridge Earthwork Transition Area Using the Ground Penetrating Radar in the Soft Ground Section (연약지반 구간에서 지표투과레이더 활용한 교량 접속부 침하량 안전 평가)

  • Jung, Gukyoung;Jo, Youngkyun;Kim, Sungrae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.17-22
    • /
    • 2022
  • To reduce the bump of bridge/earthwork transition area caused by the settlement of the soft ground during public use, the road agencies have been continuously overlay or repavement at those areas. In this study, the vehicle-mounted ground penetrating radar with 1GHz air-coupled antenna was used to estimate the settlement amount of those areas for nine bridges built in the soft ground. Results shows that it is possible to effectively measure the thickness of pavement up to a depth of 1 m on an asphalt road with ground penetrating radar technology that can inspect under the road surface. Distinctively deformation of the road surface, the variation in the thickness of the pavement measured at bridge/earth transition areas is equivalent to a minimum of 50 mm and a maximum of 600 mm, and there is a risk of cavity in the ground. The difference in the increased pavement thickness is 50~250 mm for each bridge connection, which may cause the differential settlement. In this study, by using the result of the ground penetration radar, a plan for improving drivability and maintenance of the settlement is suggested and applied to the field.

Flood Damage Estimation causing Backwater due to the Blockage by Debris in the Bridges (교량에 집적된 유송잡물의 배수영향에 의한 홍수피해 분석)

  • Kim, Soo-Jun;Chung, Jae-Hak;Lee, Jong-Seol;Kim, Ji-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.59-66
    • /
    • 2007
  • The bridge crossing river is the one of the major factors causing backwater level rising. Furthermore, the bridges in the mountainous areas increase the flood damage in the upstream of the bridge due to the blockage by debris. In this research, the effects of debris to the magnitude of flood damage in the study river basin were simulated by using HEC-RAS and HEC-GeoRAS models. With assumption that the backwater caused by debris blocking the space between bridge piers is the only factor causing inundation, the unsteady flow simulation was carried out with various case studies. The potential inundation area with the overflow locations and volumes could be estimated as the results of simulation. However, the simulation results also reveal the limitations of inaccurate estimation of inundation area and depth. To overcome these hindrances, DEM and satellite images were applied to the simulation. By readjusting the inundation area using digital maps and satellite images and calibrating overflow volume and depth using DEM, the accuracy of simulation could be increased resulting more accurate flood damage estimation.

Bridge Design of Seoul Expressway (North Area) (도시고속화도로(북부간선)의 교량설계)

  • 변윤주;김우종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.135-139
    • /
    • 1991
  • The Seoul expressway is designed with prestressed concrete box girders. As a construction method, Precast Free Cantilever Method (P.F.C.M) is used which is introduced to Korea first time. Especially, the end spans in each bridge are designed to be constructed by cantilever method using temporary cantilever tendons. And pier and pierhead are prestressed vertically and horizontally.

  • PDF

The Increment Of The Local Scour Depth At Piers By Constructing The Bridge Between Existing Bridges

  • Choi, Gye-Woon;Kim, Gee-Hyoung
    • Water Engineering Research
    • /
    • v.1 no.2
    • /
    • pp.159-168
    • /
    • 2000
  • In this paper, the increment of the local scour depth at piers by constructing the bridge between existing bridges is examined through the experiments in which 5 piers in the non-cohesive bed material in the experimental flume were installed. In the experiments the maximum distance of 25 times of the pier length and the maximum distortion width of 8 times of the pier width were utilized. Through the experimental studies, it was indicated that low flow, which can be characterized as the flow having low Froude numbers, the maximum bed configuration change is obtained when the piers are installed in the straight line in the flor direction without any distortion. However, In the high flow, which can be characterized as the flow having high Froude numbers, the maximum bed configuration change is obtained when the piers are installed with some distortion from the flow direction. The influence of the bed configuration by interaction between bridge piers is changed depending upon the Froude numbers, the distance between piers, and the distortion width between adjacent bridge piers. Also, because the scour patterns are affected by the bed configuration, the maximum scour should be increased by about 60% compared to that in a single pier if the interaction between bridge piers exists. It can be suggested that the maximum scour depth at bridge piers predicted by applying the existing equations should be increased if the interaction between bridge piers exist. Those cases are found when new bridges are constructed successively in the river in the urban area.

  • PDF

The Simulation and Experimental Study on the Bridge Response of AGT Bridge - Vehicle interaction System (AGT 시스템 교량-차량 상호작용에 의한 교량응답 시뮬레이션 및 실험)

  • Na, Sang-Ju;Kim, Ki-Bong;Song, Jae-Pil;Kim, Hyun-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.395-400
    • /
    • 2007
  • LRT(Light Railway Train), which is a intermediate system of train and bus, is arose for the solution of subway construction cost and the transportation capacity of bus. LRT was introduced in 1980's. About 30 local governments are plan to introduce LRT or constructing LRT, at present. AGT(Automated Guide-way Transit) system, which is a kind of LRT, is operated without driver. Rubber wheeled AGT system can reduce the noise and vibration compare to steel wheeled AGT, so it is estimated as ideal transportation system for urban area. And live loads at bridge are classified as the static load of vehicle and the dynamic wheel contact load which is occurred from the interaction of bridge and vehicle vibration, and the surface roughness. In the case of AGT system, the dynamic increment factor of bridge is greater than the normal train bridge and roadway bridge, because, the weight of AGT vehicle is more light that the train of truck. The exact method for dynamic increment factor is experiment. But this method is needed much money and time, moreover, this method cannot be adopted in design. Therefore, a simulation program for the interaction of AGT bridge, vehicle and surface roughness was developed, in this study. And the program was verified by experiment. As a result, the accuracy of the simulation program can be verified.

  • PDF

Ambient Vibration measurements and finite element modelling for the Hong Kong Ting Kau Bridge

  • Au, F.T.K.;Tham, L.G.;Lee, P.K.K.;Su, C.;Han, D.J.;Yan, Q.S.;Wong, K.Y.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.115-134
    • /
    • 2003
  • The Ting Kau Bridge in Hong Kong is a cable-stayed bridge comprising two main spans and two side spans. The bridge deck is supported by three towers, an end pier and an abutment. Each of the three towers consists of a single reinforced concrete mast which reduces its section in steps, and it is strengthened by transverse cables and struts in the transverse vertical plane. The bridge deck is supported by four inclined planes of cables emanating from anchorages at the tower tops. In view of the threat from typhoons, the dynamic behaviour of long-span cable-supported bridges in the region is always an important consideration in their design. This paper is devoted to the ambient vibration measurements of the bridge for evaluation of dynamic characteristics including the natural frequencies and mode shapes. It also describes the modelling of the bridge. A few finite element models are developed and calibrated to match with the field data and the results of subsequent structural health monitoring of the bridge.

Experimental Study on the Variation of Track Stiffness between Earthwork and Bridge (교량 토공 접속부에서 궤도강성변화에 대한 실험적 연구)

  • 나성훈;서사범;손기준;김정환
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.281-288
    • /
    • 2001
  • In order to evaluate the effect of impact load at support stiffness transition area, the field estimations are performed at the transition zone between earthwork and bridge on test operation of KTX. Due to differential settlement caused by the variations of track support stiffness, large impact forces are investigated. However, the measured values such as wheel load, rail stress, displacement and acceleration in the transition area shows that the stiffness changes in the transition area are not abrupt, and the stiffness in the infra track structure varies continuously. In this experimental study, the parameters influencing safety of transition area are not governed by partial or local stiffness because cumulative passing loads are not sufficient on test operation of KTX.

  • PDF