• Title/Summary/Keyword: Bridge area

Search Result 746, Processing Time 0.024 seconds

Analysis on Visual Preference of Bridge Landscapes of Background and Shape in Rural Area - Focused on the Natural Landscape in Rural Area - (농촌지역의 교량의 배경경관 및 교량형태에 따른 시각적 선호도 분석 - 농촌지역 자연경관을 중심으로 -)

  • Chun, Hyun-jin;Jiang, Long;Cheng, Yu-ning
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.2
    • /
    • pp.89-98
    • /
    • 2016
  • Due to the rapid economic development of Korea, the bridge have been built by government over the several years. Additionally, there are too many mountain and river and the bridge have been built in rural area. But bridge designers weren't considering the bridge landscape. And bridge was a negative factor in regional landscape. Because of this, this study surveyed the landscape preferences of rural bridge landscapes according to different bridge types. The results were summarized as follows: And this research include conducting a study on visual preference according to the bridge's type and background. And, the landscape of arch bridge in the river 1 is landscape of the highest preference. The the landscape of girder bridge in the river 2 is landscape of the lowest preference. In the river 1 and 2 landscape, high preference is observed in the arch bridge and low preference is noted in the girder bridge. In the mountain 1 and 2 landscape, high preference is observed in the cable-stayed bridge and low preference is noted in the girder bridge. In conclusion, the visual preference of bridge landscape depend on the background and bridge shape, the study said. Therefore, when bridge designer design the bridge, designer have to choose proper bridge shape according to the background. This research was conducted only in bridge landscape of rural area but the visual preference of bridge landscape can be changed according to the various background. And further research is needed to analyze visual preference of bridge landscape according to the various background.

Characteristics of Bird Community in Han River Area (한강지역 조류군집의 특성)

  • Lee, Woo-Shin;Park, Chan-Ryul;Rhim, Shin-Jae
    • The Korean Journal of Ecology
    • /
    • v.23 no.3
    • /
    • pp.273-279
    • /
    • 2000
  • This study was conducted to clarify the characteristics of bird community in Han River area from Oct. 1997 to Jul. 1998. Total 107 bird species were recorded in Han River area. Bird mainly distributed around Kangdong Bridge, Paldang Dam, Yangsuri, Haengju Bridge, Sungsan Bridge, and Bam island. The area between Dongiak Bridge and Youngdong Bridge showed the lowest the density of birds. The dominant birds of Han River area were the dabbling ducks, which were Anas platyrhynchos and A. poecilorhyncha. Diving ducks were distributed in the Dongiak Bridge, Youngdong Bridge, and estuary area. Grebes, Gulls, Herons, and Coots were also dominant bird species. Cormorants, Swans, Sandpipers, and Plovers were minor birds in Han River area. Maintenance and management of various micro-habitats are needed for habitation of bird community in Han River area.

  • PDF

A study on the Evolutionary Optimization of Cable Area of the Cable-Stayed Bridge (사장교 케이블 단면적의 점진적 최적화에 관한 연구)

  • 최창근;이태열;홍현석;김은성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.113-120
    • /
    • 1996
  • This study presents the optimization technique to determine the cable areas of the cable-stayed bridge. The optimization method presented in this paper is based on an evolutionary procedure, in which the area of high stressed cable is increased step-by-step until an optimal area of the cable is obtained. A comparison between the maximum values of the present method and those of the cable-stayed bridge that has the same cable area shows the advantages of the present method.

  • PDF

The effect of compression load and rock bridge geometry on the shear mechanism of weak plane

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.431-446
    • /
    • 2017
  • Rock bridges in rock masses would increase the bearing capacity of Non-persistent discontinuities. In this paper the effect of ratio of rock bridge surface to joint surface, rock bridge shape and normal load on failure behaviour of intermittent rock joint were investigated. A total of 42 various models with dimensions of $15cm{\times}15cm{\times}15cm$ of plaster specimens were fabricated simulating the open joints possessing rock bridge. The introduced rock bridges have various continuities in shear surface. The area of the rock bridge was $45cm^2$ and $90cm^2$ out of the total fixed area of $225cm^2$ respectively. The fabricated specimens were subjected to shear tests under normal loads of 0.5 MPa, 2 MPa and 4 MPa in order to investigate the shear mechanism of rock bridge. The results indicated that the failure pattern and the failure mechanism were affected by two parameters; i.e., the ratio of joint surface to rock bridge surface and normal load. So that increasing in joint area in front of the rock bridge changes the shear failure mode to tensile failure mode. Also the tensile failure change to shear failure by increasing the normal load.

Direct shear testing of brittle material samples with non-persistent cracks

  • Haeri, Hadi;Sarfarazi, Vahab;Shemirani, Alireza Bagher;Zhu, Zheming
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.927-935
    • /
    • 2018
  • The mechanical behavior of the brittle material samples containing the internal and edge cracks are studied under direct shear tests. It is tried to investigate the effects of stress interactions and stress intensity factors at the tips of the pre-existing cracks on the failure mechanism of the bridge areas within these cracks. The direct shear tests are carried out on more than 30 various modeled samples each containing the internal cracks (S models) and edge cracks (E models). The visual inspection and a low power microscope are used to monitor the failure mechanisms of the tested samples. The cracks initiation, propagation and coalescences are being visualized in each test and the detected failure surfaces are used to study and measure the characteristics of each surface. These investigations show that as the ratio of the crack area to the total shear surface increases the shear failure mode changes to that of the tensile. When the bridge areas are fixed, the bridge areas in between the edge cracks have less strength than those of internal cracks. However, the results of this study show that for the case of internal cracks as the bridge area is increased, the strength of the material within the bridge area is decreased. It has been shown that the failure mechanism and fracture pattern of the samples depend on the bridge areas because as the bridge area decreases the interactions between the crack tip stress fields increases.

Experimental study of shear behavior of planar nonpersistent joint

  • Haeri, Hadi;Sarfarazi, Vahab;Lazemi, Hossein Ali
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.639-653
    • /
    • 2016
  • The present article discusses the effect of the ratio of bridge surface to total shear surface, number of bridge areas and normal stress on the failure behavior of the planar non-persistent open joints. Totally, 38 models were prepared using plaster and dimensions of $15cm{\times}15cm{\times}15cm$. The bridge area occupied $45cm^2$, $90cm^2$ and $135cm^2$ out of the shear surface. The number of rock bridges increase in fixed area. Two similar samples were prepared on every variation in the rock bridges and tested for direct shear strength under two high and low normal loads. The results indicated that the failure pattern and the failure mechanism is mostly influenced by the ratio of bridge surface to total shear surface and normal stress so that the tensile failure mode change to shear failure mode by increasing in the value of introduced parameters. Furthermore, the shear strength and shear stiffness are closely related to the ratio of bridge surface to total shear surface, number of bridge areas and normal stress.

A surrogate model-based framework for seismic resilience estimation of bridge transportation networks

  • Sungsik Yoon ;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • A bridge transportation network supplies products from various source nodes to destination nodes through bridge structures in a target region. However, recent frequent earthquakes have caused damage to bridge structures, resulting in extreme direct damage to the target area as well as indirect damage to other lifeline structures. Therefore, in this study, a surrogate model-based comprehensive framework to estimate the seismic resilience of bridge transportation networks is proposed. For this purpose, total system travel time (TSTT) is introduced for accurate performance indicator of the bridge transportation network, and an artificial neural network (ANN)-based surrogate model is constructed to reduce traffic analysis time for high-dimensional TSTT computation. The proposed framework includes procedures for constructing an ANN-based surrogate model to accelerate network performance computation, as well as conventional procedures such as direct Monte Carlo simulation (MCS) calculation and bridge restoration calculation. To demonstrate the proposed framework, Pohang bridge transportation network is reconstructed based on geographic information system (GIS) data, and an ANN model is constructed with the damage states of the transportation network and TSTT using the representative earthquake epicenter in the target area. For obtaining the seismic resilience curve of the Pohang region, five epicenters are considered, with earthquake magnitudes 6.0 to 8.0, and the direct and indirect damages of the bridge transportation network are evaluated. Thus, it is concluded that the proposed surrogate model-based framework can efficiently evaluate the seismic resilience of a high-dimensional bridge transportation network, and also it can be used for decision-making to minimize damage.

Crash Characteristics within the Bridge Influence Area of Expressway Using the Discriminant Analysis (판별분석을 이용한 고속도로 교량영향권역 교통사고 특성분석에 관한 연구)

  • Park, JeJin
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.149-158
    • /
    • 2014
  • PURPOSES : The bridge section of the expressway has a worse driving environment than the general section. However, traffic safety countermeasures are focused only on the bridge section. Traffic safety countermeasures on the section before entry to the bridge and the section after exit from the bridge are applied only when the bridge has a long-span section. Accordingly, this study will verify the necessity of extending the application of traffic safety countermeasures to areas that are affected by the bridge. METHODS : This study determines the areas that are affected by the bridge as well as the areas that are affected by locations with frequent traffic accidents and suggests the risk factors by affected areas through canonical discriminant analysis. For the analysis, traffic accident data for 3 years, which occurred on bridge sections in six major expressway lines, were used. RESULTS : The numbers of traffic accidents were 469 before the bridge, 281 on the bridge, and 468 after the bridge. The variables that have impact on the seriousness of accidents are as follows: speeding, excess manipulation of the steering wheel, and failure to secure safety distance for accidents that occurred before the bridge section; speeding, excess manipulation of the steering wheel, and dozing off for accidents that occurred on the bridge; and speeding and failure to secure safety distance for accidents that occurred after the bridge section. CONCLUSIONS : Areas affected by the bridge show higher accident rates than the bridge section; therefore, imposing traffic safety countermeasures on the integrated section of the bridge and the affected areas is required. It is believed that the results suggested in this study could be effectively used in the prevention of traffic accidents by imposing custom-made safety countermeasures for each section.

Experimental and Analysis Study on Transition Area Between Bridge and Earthwork (교량, 토공 접속구간 궤도동적계측 및 해석에 관한 연구)

  • 강윤석;나성훈;신정렬;양신추
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.250-255
    • /
    • 2002
  • The transition between bridge and earthwork often causes the problems of maintenance. The damages of the track on the transition area influence running safety of train and serviceability, increase the maintenance cost. Therefore it is very important to evaluate the dynamic responses of transition and take a efficient measure. In order to evaluate the dynamic behavior of track, the field estimations are performed at the transition area of a conventional line between bridge and earthwork. And the track system on the transition area numerically analyzed to evaluate the dynamic behavior of damaged track with void sleeper. The measured values and Analysis results such as wheel contact force, rail stress, displacement acceleration and track irregularity in the transition area show the dynamic forces are severe. So it is recommended that the transition area should be improved the rigidity by reinforcing the rail.

  • PDF

Characteristics of Lime-cavities and Survey Design for Bridge Foundation in the Karst Area (석회 공동의 특성과 카르스트 지역 내 교량 기초를 위한 조사 설계)

  • 윤운상;김학수;최원석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.399-406
    • /
    • 1999
  • Recently, the construction of the several highway bridges in the karst area have encountered severe problems associated with cavities and sinkholes. To solve this problems, it is important to understand the distribution characteristics of cavities in the construction site on limestone area. This paper briefly describes the different types, the distribution control factors and the infill sediment types of lime-cavities in the study area, bridge site in the karst area and propose the effective method of survey design. Cavity system may be divided into two main groups, 1)'slot and cave system'and 2)'sinkhole and cave system'. And the shape, the size and the distribution pattern of cavity are controlled by three main factors - rock type, geological structure and ground water condition. Additionally, infill sediment may be considered as one of the important design factors for foundation design and divided into four types by sediment properties. There are geophysical thechnics and geologic survey and drilling test, etc. by the survey method to interpretate characteristics of cavity system, and this methods are optimally designed at the site investigation stage.

  • PDF