• Title/Summary/Keyword: Bridge analysis

Search Result 4,008, Processing Time 0.036 seconds

Nonlinear aerostatic stability analysis of Hutong cable-stayed rail-cum-road bridge

  • Xu, Man;Guo, Weiwei;Xia, He;Li, Kebing
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.485-503
    • /
    • 2016
  • To investigate the nonlinear aerostatic stability of the Hutong cable-stayed rail-cum-road bridge with ultra-kilometer main span, a FEM bridge model is established. The tri-component wind loads and geometric nonlinearity are taken into consideration and discussed for the influence of nonlinear parameters and factors on bridge resistant capacity of aerostatic instability. The results show that the effect of initial wind attack-angle is significant for the aerostatic stability analysis of the bridge. The geometric nonlinearities of the bridge are of considerable importance in the analysis, especially the effect of cable sag. The instable mechanism of the Hutong Bridge with a steel truss girder is the spatial combination of vertical bending and torsion with large lateral bending displacement. The design wind velocity is much lower than the static instability wind velocity, and the structural aerostatic resistance capacity can meet the requirement.

Development of train/bridge interaction Analysis program Consideration braking (열차 제동하중을 고려한 차량/교량 상호 작용 해석기법 개발)

  • Yun hee sub;Kim Man-Cheol;Han sang chel
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1177-1183
    • /
    • 2005
  • This paper presents the effects of dynamic response of the railway bridge through the suspension system when the train is moving with uniform speed and non-uniform speed Railway bridges are subjected to dynamic loads generated by the interaction between moving vehicles and the bridge structures. these dynamic loads result in response fluctuation in bridge members. To investigate the real dynamic behavior of the bridge, a number of analytical and experimental investigation should be carried out. This paper, a train/bridge interaction analysis program considerate braking action. New scheme consideration of braking action on the bridge using speed-dependent braking function is presented. This program also used torsional degree of freedom and constraint equation based on geometrical relationship in order to take into consideration three-dimensional eccentricity effect due to the operation on double track through quasi three-dimensional analysis.

  • PDF

Dynamic Behavior of Railway Bridge Due to Trains Moving on Double Tracks (복선선로를 통과하는 열차에 의한 철도교량의 동적거동)

  • 최창근;송명관;양신추
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.450-457
    • /
    • 1999
  • In this study, the simplified method for 3-dimensional vehicle-bridge interaction analysis is utilized in the analysis of dynamic behavior of bridges in which the eccentricity of axle loads and the effect of the torsional forces acting on the bridge are included for the more accurate vehicle-bridge interaction analysis. Investigations mainly into the influence of vehicle speed on vehicle-bridge interactions are carried out for case that two trains move respectively on their tracks in the opposite direction.

  • PDF

Reliability-Based Optimum Design of High-Speed Railway Steel Bridges Considering Bridge/Rail Longitudinal Analysis and Bridge/Vehicle Dynamic Effect (교량/궤도 종방향 해석 및 교량/차량 동적영향을 고려한 고속철도 강교량의 신뢰성 최적설계)

  • Lee, Jong-Soon;Ihm, Yeong-Rok
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.974-982
    • /
    • 2009
  • To improve the effectiveness and economics the bridge design methodology considering the bridge/rail longitudinal analysis and bridge/vehicle dynamic effect suggested in this study. The reliability-based Life-Cycle Costs(LCC) effective optimum design is applied to a 2-main steel girder bridge, 5$\times$(1@50m) for comparison with conventional design, initial cost optimization and equivalent LCC optimization. As a result of the optimum design based on reliability, it may be stated that the design of High-Speed railway bridges considering the bridge/rail longitudinal analysis and bridge/vehicle dynamic effect are more efficient than typical existing bridges and LCC optimization without respect to bridge/rail longitudinal analysis and bridge/vehicle dynamic effect. The result of optimization design considering the interaction, design methodology suggested in this study, is higher than result of initial cost optimization design in initial cost, but that has the advantage than result of initial cost optimization design in expected LCC.

Equivalent boundary conditions to analyze the realistic fatigue behaviors of a bridge RC slab

  • Khan, Arslan Q.;Deng, Pengru;Matsumoto, Takashi
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.369-383
    • /
    • 2022
  • In this study, an equivalent boundary conditions (BCs) determination method is developed numerically for a panel reinforced concrete (RC) slab to realistically analyze the deformation and fatigue behaviors of a bridge RC slab. For this purpose, a finite element analysis of a bridge RC slab is carried out beforehand to calculate the stiffness of the bridge RC slab, and then the equivalent BCs for the panel RC slab are determined to achieve the same stiffness at the BCs to the obtained stiffness of the bridge RC slab at the corresponding locations of the bridge RC slab. Moreover, for the simulation of fatigue behaviors, fatigue analysis of the panel RC slab is carried out employing a finite element method based on a numerical model that considers the bridging stress degradation. Both the determined equivalent BCs and the BCs that have been typically applied in past studies are employed. The analysis results confirm that, in contrast to the panel RC slab with typically used BCs, the panel RC slab with equivalent BCs simulate the same bending moment distribution and deformation behaviors of the bridge RC slab. Furthermore, the equivalent BCs reproduce the extensive grid crack pattern in the panel RC slab, which is alike the pattern normally witnessed in a bridge RC slab. Conclusively, the panel RC slab with equivalent BCs behaves identical to the bridge RC slab, and, as a result, it shows more realistic fatigue behaviors observed in the bridge RC slab.

Mechanical performance study and parametric analysis of three-tower four-span suspension bridges with steel truss girders

  • Cheng, Jin;Xu, Mingsai;Xu, Hang
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.189-198
    • /
    • 2019
  • This paper aims to study the mechanical performance of three-tower four-span suspension bridges with steel truss girders, including the static and dynamic characteristics of the bridge system, and more importantly, the influence of structural parameters including the side-main span ratio, sag-to-span ratio and the girder stiffness on key mechanical indices. For this purpose, the Oujiang River North Estuary Bridge which is a three-tower four-span suspension bridge with two main spans of 800m under construction in China is taken as an example in this study. This will be the first three-tower suspension bridge with steel truss girders in the world. The mechanical performance study and parametric analysis are conducted based on a validated three-dimensional spatial truss finite element model established for the Oujiang River North Estuary Bridge using MIDAS Civil. It is found that a relatively small side-main span ratio seems to be quite appropriate from the perspective of mechanical performance. And decreasing the sag-to-span ratio is an effective way to reduce the horizontal force subjected to the midtower and improve the antiskid safety of the main cable, while the vertical stiffness of the bridge will be reduced. However, the girder stiffness is shown to be of minimal significance on the mechanical performance. The findings from this paper can be used for design of three-tower suspension bridges with steel truss girders.

An Evaluation of Orthotropic Steel Bridge Deck Pavement Behavior Using Wheel Load Testing and 3D Finite Element Analysis (윤하중 시험과 유한요소해석을 통한 강상판 교면포장의 거동분석 연구)

  • Kim, Tae Woo;Choi, Ji Young;Lee, Hyun Jong;Baek, Jongeun;Ohm, Byung Sik
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.103-110
    • /
    • 2013
  • PURPOSES: The objective of this study is to analyze and evaluate the behavior of orthotropic steel bridge deck pavement using three-dimensional finite element analysis and full-scale wheel load testing. METHODS: Since the layer thickness and material properties used in the bridge deck pavement are different from its condition, it is very difficult to measure and access the behavior of bridge deck pavement in the field. To solve this problem, the full-scale wheel load testing was conducted on the PSMA/Mastic bridge deck pavement and the deflection of bridge deck and horizontal tensile strain on top of pavement were measured under the loading condition. Three-dimensional finite element analysis was conducted to predict the behavior of bridge deck pavement and the predicted deflection and tensile strain values are compared with measured values from the wheel loading testing. RESULTS: Test results showed that the predicted deflections are 10% lower than measured ones and the error between predicted and measured horizontal tensile strain values is less than 2% in the critical location. CONCLUSIONS: The fact indicates that the proposed the analysis is found to be accurate for estimating the behavior of bridge deck pavements.

Dynamic Behavior Analysis of Railway Bridge considering Track Stiffness (궤도구조를 고려한 철도교량의 동적거동 분석)

  • Kang, Duck-Man;An, Hea-Young;Sung, Deok-Yong;Kim, Sung-Il;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.55-65
    • /
    • 2009
  • This study is objected by analyzing whether it is applied to the analysis model considering the track stiffness or not when the railway bridge is designed or reviewed for the dynamic stability. It is performed that the analysis model is verified by comparing the field test result with the analysis result. Also, The dynamic response of railway bridge through the existing analysis model is compared with the analysis model considered the track stiffness. In addition, it is performed by analyzing the model considering the stiffness of concrete track. Therefore, this study is suggested that the design of railway bridge apply to the existing analysis model considering the mass of track and the dynamic stability review of railway bridge apply to it considered the stiffness & mass of track. Also, it is suggested that the stiffness of concrete slab on the bridge must consider when it is designed or checked over the dynamic stability.

  • PDF

An Equivalent Model for Seismic Analysis of Structures Connected by a Sky-bridge (Sky-bridge로 연결된 구조물의 지진해석을 위한 등가모델)

  • Yang, Ah-Ram;Kim, Hyun-Su;Lee, Dong-Guen;Ah, Sang-Kyung;Oh, Jung-Keun;Moon, Yeong-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.203-208
    • /
    • 2008
  • Recently, high-rise building structures connected by a sky-bridge are frequently constructed. To predict accurate dynamic responses of structures connected a sky-bridge, time history analysis is required. Repetitive analyses are required in the design process. If the entire structure model is employed in the repetitive time history analysis, it would take a lot of computational time and engineers' efforts. Therefore, an equivalent model for high-rise building structures connected by a sky-bridge was proposed in this study. The proposed model consists of cantilever having original structure's stiffnesses and masses. Based on the analytical results, it has been shown that the equivalent model can reduce the analysis time and provide similar seismic responses to the original model.

  • PDF

Automatic Generation Module of IFC-based Structural Analysis Information Model Through 3-D Bridge Information Modeling (3차원 교량정보 모델링에 따른 IFC 기반 트러스교 구조해석정보 자동생성 모듈)

  • Yi, Jin-Hoon;Kim, Hyo-Jin;Lee, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.809-812
    • /
    • 2007
  • Automatic generation method of structural analysis model data for a truss bridge is presented through 3-D bridge information modeling based on Industry Foundation Classes(IFC). The mapping schema is proposed between a steel bridge information model based on STEP and a truss bridge information model based on the IFC. The geometry information from mapping is presented by IFC model, and SAP 2000 that can import the IFC file performs the structural analysis. Numerical analysis for a truss bridge is performed in this paper.

  • PDF