• Title/Summary/Keyword: Bridge Transport System

Search Result 43, Processing Time 0.028 seconds

Research on non-destructive testing technology for existing bridge pile foundations

  • Zhang, Xue-feng;Ni, Ying-sheng;Song, Chunxia;Xu, Dong
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.43-58
    • /
    • 2020
  • Pile foundations of existing bridges lie in soil and water environment for long term and endure relatively heavy vertical loads, thus prone to damages, especially after stricken by external forces, such as earthquake, collision, soil heap load and etc., and the piles may be injured to certain degrees as well. There is a relatively complete technical system for quality inspection of new bridge pile foundations without structures on the top. However, there is no mature technical standard in the engineering community for the non-destructive testing technology specific to the existing bridge pile foundations. The quality of bridge pile foundations has always been a major problem that plagues bridge maintenance. On the basis of many years' experiences in test engineering and theoretical studies, this study developed a new type of detection technology and equipment for the existing bridge piles.

Passive control system for seismic protection of a multi-tower cable-stayed bridge

  • Geng, Fangfang;Ding, Youliang;Song, Jianyong;Li, Wanheng;Li, Aiqun
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.495-514
    • /
    • 2014
  • The performance of passive control system for the seismic protection of a multi-tower cable-stayed bridge with the application of partially longitudinal constraint system is investigated. The seismic responses of the Jiashao Bridge, a six-tower cable-stayed bridge using the partially longitudinal constraint system are studied under real earthquake ground motions. The effects of the passive control devices including the viscous fluid dampers and elastic cables on the seismic responses of the bridge are examined by taking different values of parameters of the devices. Further, the optimization design principle of passive control system using viscous fluid dampers is presented to determine the optimized parameters of the viscous fluid dampers. The results of the investigations show that the control objective of the multi-tower cable-stayed bridge with the partially longitudinal constraint system is to reduce the base shears and moments of bridge towers longitudinally restricted with the bridge deck. The viscous fluid dampers are found to be more effective than elastic cables in controlling the seismic responses. The optimized parameters for the viscous fluid dampers are determined following the principle that the peak displacement at the end of bridge deck reaches to the maximum value, which can yield maximum reductions in the base shears and moments of bridge towers longitudinally restricted with the bridge deck, with slight increases in the base shears and moments of bridge towers longitudinally unrestricted with the bridge deck.

Influence of structural system measures on the dynamic characteristics of a multi-span cable-stayed bridge

  • Geng, Fangfang;Ding, Youliang;Xie, Hongen;Song, Jianyong;Li, Wanheng
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.51-73
    • /
    • 2014
  • A three-dimensional finite element model for the Jiashao Bridge, the longest multi-span cable-stayed bridge in the world, is established using the commercial software package ANSYS. Dynamic characteristics of the bridge are analyzed and the effects of structural system measures including the rigid hinge, auxiliary piers and longitudinal constraints between the girders and side towers on the dynamic properties including modal frequency, mode shape and effective mass are studied by referring to the Jiashao Bridge. The analysis results reveal that: (i) the installation of the rigid hinge significantly reduces the modal frequency of the first symmetric lateral bending mode of bridge deck. Moreover, the rigid hinge significantly changes the mode shape and effective mass of the first symmetric torsional mode of bridge deck; (ii) the layout of the auxiliary piers in the side-spans has a limited effect on changing the modal frequencies, mode shapes and effective masses of global vibration modes; (iii) the employment of the longitudinal constraints significantly increases the modal frequencies of the vertical bending modes and lateral bending modes of bridge deck and have significant effects on changing the mode shapes of vertical bending modes and lateral bending modes of bridge deck. Moreover, the effective mass of the first anti-symmetric vertical bending of bridge deck in the longitudinal direction of the fully floating system is significantly larger than that of the partially constrained system and fully constrained system. The results obtained indicate that the structural system measures of the multi-span cable-stayed bridge have a great effect on the dynamic properties, which deserves special attention for seismic design and wind-resistant design of the multi-span cable-stayed bridge.

Design of Bridge Transport System with Equal Incremental Telescopic Motion (동일신축 텔레스코픽모션을 갖는 천정이동장치 설계)

  • Yoon, Kwang-Ho;Lee, Hyo-Jik;Lee, Jong-Kwang;Park, Byung-Suk;Kim, Ki-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.227-235
    • /
    • 2010
  • This paper introduces the design of a bridge transport system with a telescopic tube for positioning equipment to perform remote handling tasks in a radioactive facility. It consists of an extensible and retractable telescopic tube assembly for z-direction motion, a cabling system for management of power and signal cables, and a trolley system for transverse motion and accommodating servo drives. The working environment for the bridge transport system with the telescopic tube requires strict geometrical constraints, including a short height, short telescopic tube length when retracted, and a long stroke. These constraints were met by solving a nonlinear programming problem involving the optimal dimensions. This paper introduces a cabling system for effective management of cables with changeable lengths to accommodate telescopic motions and a selection guide for servo drives that are sufficient to drive the system.

Large-scale pilot test study on bearing capacity of sea-crossing bridge main pier pile foundations

  • Zhang, Xuefeng;Li, Qingning;Ma, Ye;Zhang, Xiaojiang;Yang, Shizhao
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.201-212
    • /
    • 2014
  • Due to the sea-crossing bridge span is generally large and main pier pile foundations are located in deep water and carry large vertical load, sea-crossing bridge main pier pile foundations bearing mechanism and load deformation characteristics are still vague. Authors studied the vertical bearing properties of sea-crossing bridge main pier pile foundations through pilot load tests. Large tonnage load test of Qingdao Bay Bridge main pier pile program is designed by using per-stressed technique to optimize the design of anchor pile reaction beam system. Test results show that the design is feasible and effective. This method can directly test bearing capacity of main pier pile foundations, and analysis bearing behaviors from test results of sensors which embedded in the pile. Through test study the vertical bearing properties of main pier pile foundation and compared with the generally short pile, author summarized the main pier pile foundations vertical bearing capacity and the main problem of design and construction which need to pay attention, and provide a reliable basis and experience for sea-crossing bridge main pier pile foundations design and construction.

Prospects of Development of the Russian Asia Railway System: Geoeconomic Aspect

  • Evgeniy, Kibalov
    • International Journal of Railway
    • /
    • v.3 no.4
    • /
    • pp.123-125
    • /
    • 2010
  • That Russia is potentially great transport power becomes obvious if look to map of any route. The geographical position of the Russian Federation unequivocally specifies intended by nature the role of geobridge between the countries of Asia-Pacific Region and Europe. However, in construction engineering practice and feasibility study the construction of difficult and strategically important bridges is generally joins in wider concept of bridge crossing. The last includes not only actually the bridge(through the river, gulf, etc.), but also approaches to it, which construction in view of features of a relief and a configuration of new transport communications which have already developed and subject to construction not less difficult technically and not only economically expended, than building of the basic artificial construction.

  • PDF

An experimental construction of railway steel plate girder strengthen adding ballast system by transport equipment (선로 이송 가설공법을 적용한 철도판형교 유도상화)

  • Min, Ji-Hong;Seo, Jong-Won;Jang, Hyeong-Sik;Park, Joon-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.707-716
    • /
    • 2011
  • It has been applied using cranes or insertion methods to install heavy structures to strengthen existing railway bridges. These methods are uneconomical because of two reasons. The first one is it is required to construct approach roads for heavy equipment and/or working yard. The second one is the electric lines shall be cutoff during construction. Both require additional construction cost and duration. In this study, new transport equipment was developed which can be applied to heavy structures up to 100 ton. Using this method, the heavy structure can be loaded into the new transport equipment at working yard and transported to the working site. This method can be applied, but not limited to railway bridge or roadbed rehabilitation. It was found that the precious construction can be achieved to install heavy structure using this method. The experimental construction to make non-ballast girder bridge composite with new pc deck slab using this method was carried out for Jewon bridge. The example bridge is in extreme condition because it locates above national road #38 within extreme transition curve and has 10 ‰ slope and skew. The experimental construction results were satisfactory both for safety and construction precision.

  • PDF

Highway bridge live loading assessment and load carrying capacity estimation using a health monitoring system

  • Moyo, Pilate;Brownjohn, James Mark William;Omenzetter, Piotr
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.609-626
    • /
    • 2004
  • The Land Transport Authority of Singapore has a continuing program of highway bridge upgrading, to refurbish and strengthen bridges to allow for increasing vehicle traffic and increasing axle loads. One subject of this program has been a short span bridge taking a busy highway across a coastal inlet near a major port facility. Experiment-based structural assessments of the bridge were conducted before and after upgrading works including strengthening. Each assessment exercise comprised two separate components; a strain and acceleration monitoring exercise lasting approximately one month, and a full-scale dynamic test carried out in a single day. This paper reports the application of extreme value statistics to estimate bridge live loads using strain measurements.