• Title/Summary/Keyword: Bridge Mode

Search Result 640, Processing Time 0.031 seconds

Modal identifiability of a cable-stayed bridge using proper orthogonal decomposition

  • Li, M.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.413-429
    • /
    • 2016
  • The recent research on proper orthogonal decomposition (POD) has revealed the linkage between proper orthogonal modes and linear normal modes. This paper presents an investigation into the modal identifiability of an instrumented cable-stayed bridge using an adapted POD technique with a band-pass filtering scheme. The band-pass POD method is applied to the datasets available for this benchmark study, aiming to identify the vibration modes of the bridge and find out the so-called deficient modes which are unidentifiable under normal excitation conditions. It turns out that the second mode of the bridge cannot be stably identified under weak wind conditions and is therefore regarded as a deficient mode. To judge if the deficient mode is due to its low contribution to the structural response under weak wind conditions, modal coordinates are derived for different modes by the band-pass POD technique and an energy participation factor is defined to evaluate the energy participation of each vibration mode under different wind excitation conditions. From the non-blind datasets, it is found that the vibration modes can be reliably identified only when the energy participation factor exceeds a certain threshold value. With the identified threshold value, modal identifiability in use of the blind datasets from the same structure is examined.

Estimation of Dynamic Characteristics of Namhae Suspension Bridge Using Ambient Vibration Test (상시진동실험을 이용한 남해대교의 동특성 평가)

  • Kim, Nam-Sik;Kim, Chul-Young;Jung, Dae-Sung;Yoon, Jah-Geol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.396.1-396
    • /
    • 2002
  • The AVT under traffic-induced vibrations was carried out on Namhae Suspension bridge in Korea. Mode shapes as well as natural frequencies up to the 15th mode were acquired exactly, and the effect of traffic mass and temperature on measured natural frequencies was investigated. The results from the AVT are compared with those from forced vibration test(FVT) and FE analysis. (omitted)

  • PDF

Mode identifiability of a multi-span cable-stayed bridge utilizing stabilization diagram and singular values

  • Goi, Y.;Kim, C.W.
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.391-411
    • /
    • 2016
  • This study investigates the mode identifiability of a multi-span cable-stayed bridge in terms of a benchmark study using stabilization diagrams of a system model identified using stochastic subspace identification (SSI). Cumulative contribution ratios (CCRs) estimated from singular values of system models under different wind conditions were also considered. Observations revealed that wind speed might influence the mode identifiability of a specific mode of a cable-stayed bridge. Moreover the cumulative contribution ratio showed that the time histories monitored during strong winds, such as those of a typhoon, can be modeled with less system order than under weak winds. The blind data Acc 1 and Acc 2 were categorized as data obtained under a typhoon. Blind data Acc 3 and Acc 4 were categorized as data obtained under wind conditions of critical wind speeds around 7.5 m/s. Finally, blind data Acc 5 and Acc 6 were categorized as data measured under weak wind conditions.

Damage assessment of a bridge based on mode shapes estimated by responses of passing vehicles

  • Oshima, Yoshinobu;Yamamoto, Kyosuke;Sugiura, Kunitomo
    • Smart Structures and Systems
    • /
    • v.13 no.5
    • /
    • pp.731-753
    • /
    • 2014
  • In this study, an indirect approach is developed for assessing the state of a bridge on the basis of mode shapes estimated by the responses of passing vehicles. Two types of damages, i.e., immobilization of a support and decrease in beam stiffness at the center, are evaluated with varying degrees of road roughness and measurement noise. The assessment theory's feasibility is verified through numerical simulations of interactive vibration between a two-dimensional beam and passing vehicles modeled simply as sprung mass. It is determined that the damage state can be recognized by the estimated mode shapes when the beam incurs severe damage, such as immobilization of rotational support, and the responses contain no noise. However, the developed theory has low robustness against noise. Therefore, numerous measurements are needed for damage identification when the measurement is contaminated with noise.

Extension of a semi-analytical approach to determine natural frequencies and mode shapes of a multi-span orthotropic bridge deck

  • Rezaiguia, A.;Fisli, Y.;Ellagoune, S.;Laefer, D.F.;Ouelaa, N.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.71-87
    • /
    • 2012
  • This paper extends a single equation, semi-analytical approach for three-span bridges to multi-span ones for the rapid and precise determination of natural frequencies and natural mode shapes of an orthotropic, multi-span plate. This method can be used to study the dynamic interaction between bridges and vehicles. It is based on the modal superposition method taking into account intermodal coupling to determine natural frequencies and mode shapes of a bridge deck. In this paper, a four- and a five-span orthotropic roadway bridge deck are compared in the first 10 modes with a finite element method analysis using ANSYS software. This simplified implementation matches numerical modeling within 2% in all cases. This paper verifies that applicability of a single formula approach as a simpler alternative to finite element modeling.

The effect of compression load and rock bridge geometry on the shear mechanism of weak plane

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.431-446
    • /
    • 2017
  • Rock bridges in rock masses would increase the bearing capacity of Non-persistent discontinuities. In this paper the effect of ratio of rock bridge surface to joint surface, rock bridge shape and normal load on failure behaviour of intermittent rock joint were investigated. A total of 42 various models with dimensions of $15cm{\times}15cm{\times}15cm$ of plaster specimens were fabricated simulating the open joints possessing rock bridge. The introduced rock bridges have various continuities in shear surface. The area of the rock bridge was $45cm^2$ and $90cm^2$ out of the total fixed area of $225cm^2$ respectively. The fabricated specimens were subjected to shear tests under normal loads of 0.5 MPa, 2 MPa and 4 MPa in order to investigate the shear mechanism of rock bridge. The results indicated that the failure pattern and the failure mechanism were affected by two parameters; i.e., the ratio of joint surface to rock bridge surface and normal load. So that increasing in joint area in front of the rock bridge changes the shear failure mode to tensile failure mode. Also the tensile failure change to shear failure by increasing the normal load.

Optimal variables of TMDs for multi-mode buffeting control of long-span bridges

  • Chen, S.R.;Cai, C.S.;Gu, M.;Chang, C.C.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.387-402
    • /
    • 2003
  • In the past decades, much effort has been made towards the study of single-mode-based vibration controls with dynamic energy absorbers such as single or multiple Tuned Mass Dampers(TMDs). With the increase of bridge span length and the tendency of the bridge cross-section being more slender and streamlined, multi-mode coupled vibrations as well as their controls have become very important for large bridges susceptible to strong winds. As a simple but effective device, the TMD system especially the semi-active one has become a promising option for such coupled vibration controls. However, despite various studies of optimal controls of single-mode-based vibrations with TMDs, research on the corresponding controls of the multi-mode coupled vibrations is very rare so far. For the development of a semi-active control strategy to suppress the multi-mode coupled vibrations, a comprehensive parametric analysis on the optimal variables of this control is substantial. In the present study, a multi-mode control strategy named "three-row" TMD system is discussed and the general numerical equations are developed at first. Then a parametric study on the optimal control variables for the "three-row" TMD system is conducted for a prototype Humen Suspension Bridge, through which some useful information and a better understanding of the optimal control variables to suppress the coupled vibrations are obtained. This information lays a foundation for the design of semi-active control.

PWM-Based Sliding Mode Controller for Three-Level Full-Bridge DC-DC Converter that Eliminates Static Output Voltage Error

  • Liu, Jilong;Xiao, Fei;Ma, Weiming;Fan, Xuexin;Chen, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.378-388
    • /
    • 2015
  • This paper proposes a pulse width modulation (PWM)-based sliding mode controller (SMC) for a full-bridge DC-DC converter that can eliminate static output voltage error. Hysteretic SMC in DC-DC converter does not have a fixed switching frequency, and applying hysteretic SMC to full-bridge converters is difficult. Fixed-frequency SMC, which is also called PWM-based SMC, based on equivalent control overcomes these shortcomings. However, the controller order reduction in equivalent control in PWM-based SMC causes static output voltage error. To resolve this issue, an integral item is added to the PWM-based SMC. Sliding mode coefficients are designed by applying a standard second-order system to the sliding mode surface. The effect of adding an integral item on the controller is analyzed, and an integral coefficient design method is proposed. Experiment results on a three-level full-bridge DC-DC converter verify the control scheme and design method proposed in this paper.

Modal Parameter Extraction of Seohae Cable-stayed Bridge : I. Mode Shape (서해대교 사장교의 동특성 추출 : I. 모드형상)

  • Kim, Byeong Hwa;Park, Min Seok;Lee, Il Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.631-639
    • /
    • 2008
  • This paper reports the mode shapes of Seohae cable-stayed bridge extracted by TDD technique. In order to record total 72 acceleration points in the vertical direction of the bridge deck, a custom made data acquisition system with LAN communication has been especially developed and a set of ambient vibration tests has been conducted. For the measured acceleration responses, total twenty four mode shapes up to 2Hz has been extracted by TDD technique. The extracted mode shapes include many new modes that have not been identified in the current on-line health monitoring system installed in the bridge. It is confirmed that TDD technique is the most effective in extracting the high resolution mode shapes on a particularly long span bridge.

Transverse earthquake-induced forces in continuous bridges

  • Armouti, Nazzal S.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.733-738
    • /
    • 2002
  • A simplified rational method is developed to evaluate transverse earthquake-induced forces in continuous bridges. This method models the bridge as a beam on elastic foundation, and assumes a sinusoidal curve for both vibration mode shape and deflected shape in the transverse direction. The principle of minimum total potential is used to calculate the displacements and the earthquake-induced forces in the transverse direction. This method is concise and easy to apply, and hence, offers an attractive alternative to a lengthy and time consuming three dimensional modeling of the bridge as given by AASHTO under its Single Mode Spectral Analysis Method.