• 제목/요약/키워드: Bridge Channel

검색결과 129건 처리시간 0.02초

도로교 설계기준 및 AASHTO LRFD 설계기준에 근거한 U-채널 교량측보의 차량충돌의 영향 (Effect of Car-Crash at Edge Beam of U-Channel Bridge based on Korean Highway Bridge Specifications and AASHTO LRFD Bridge Design Specifications)

  • 최동호;나호성;이광원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.490-494
    • /
    • 2008
  • U-Channel Bridge is effective bridge type, because its edge beam performs role of barrier and enables to reduce additional dead loads. Although it is effective to reduce additional dead loads, there is possibility of bridge collapse under impact load due to car crash. Also, edge beam must have ability to induce safe driving and prevent falling accidents. Therefore, it requires behavior analysis and property investigation through the vehicle impact crashing edge beam. This study presents method of structural analysis of U-channel bridge and investigates design specifications for the effect of the edge beam under the vehicle impact. Also, it carries out stability investigation of behavior of edge beam and slab, based on Korean Highway Bridge Design Specifications and AASHTO LRFD Bridge Design Specification.

  • PDF

댐 하류 만곡부 하천에 대한 수리학적 특성 연구 (A Study on Hydraulic Characteristics of the Curved Channel in the Downstream of Dam)

  • 최한규;백효선;이계윤
    • 산업기술연구
    • /
    • 제25권A호
    • /
    • pp.3-14
    • /
    • 2005
  • In order to accurately analyze the detailed hydraulic characteristics of the curved channel in the downstream of dam with the hydraulic structures such as bridge piers, RMA2 model which is one of two-dimensional models is applied to ChunCheon dam downstream curved channel. A series of hydraulic model tests are carried out for comparison studies. HEC-RAS model is also applied to the same site. There are no errors when velocities and water levels resulted from HEC-RAS model RMA2 model are compared with those of hydraulic model test on the straight channel. But, it is found that results of RMA2 model have a better agreement with those of hydraulic model test than those of HEC-RAS model on the curved channel with bridge piers. Additionally, RMA2 model can be predicted the eddy phenomena around bridge piers of the curved channel.

  • PDF

충돌하중을 받는 U-채널 교량 측보의 구조적 안정성에 관한 연구 (A Study on the Structural Stability of Edge Beam of U-Channel Bridge Under Impact Loads)

  • 최동호;나호성;이광원
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.333-336
    • /
    • 2008
  • U-Channel Bridge is effective bridge type, because its edge beam performs role of barrier and enables to reduce additional dead loads. Nevertheless, there is possibility of bridge collapse under impact load due to car crash. Also, edge beam must have ability to induce safe driving and prevent falling accidents. Therefore, this study carries out analysis of behavior of edge beam and slab and evaluation of structural stability under impact loads, based on Korean Highway Bridge Design Specifications and AASHTO LRFD Bridge Design Specification. According to analysis result, the maximum stress of edge beam and slab satisfies specification of allowable stress.

  • PDF

교량기초와 세굴 (Bridge Foundation and Scour)

  • 곽기석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 기초기술위원회 워크샵
    • /
    • pp.168-187
    • /
    • 2002
  • Scour is the physical or chemical attack of flowing water which excavates and carries away material from stream beds and banks. Especially, hydraulic structures such as bridge piers and abutments placed in the channel causes the changes of the flow pattern like acceleration, the formation of vortices, and scour around the structures. Channel scour, especially bridge pier scour is the leading cause of bridge failures. It is very important to apply appropriate methods for both of scour analysis and protection. In this paper, several methods world-widely used for bridge scour analysis and protection are introduced and compared.

  • PDF

U-Channel Brdige의 적용성 연구 (The Applicability Study of U-Channel Bridge)

  • 최동호;이주호;박명균;김성재;김용식;김성원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.495-498
    • /
    • 2008
  • In this paper applicable range of U-Channel Bridge (UCB) that has recently been introduced as a new bridge type was studied. For structural analysis models used with the frame and plate elements was proposed, and verification of the models were performed. Using these structural models structural analysis of models with span length of 20m-45m and inner width of 5m-13m were performed. As a result for U-shape sections were applicable in the range of 20m span and 35m span, slab was applicable in the range of 5m inner width and 12m inner width. To increase applicable range of UCB H-shape sections and slab with rib were proposed. As a result UCB were applicable in the range of 20m span and 45m span, in the range of 5m inner width and 13m inner width.

  • PDF

U-채널 세그멘탈 콘크리트 교량의 차량충돌에 대한 안전성 분석 (A Stability Analysis for Vehicle Impact in U-Channel Segmental Concrete Bridges)

  • 최동호;나호성
    • 한국방재학회 논문집
    • /
    • 제10권6호
    • /
    • pp.17-25
    • /
    • 2010
  • 본 연구는 U-채널 세그멘탈 콘크리트 교량의 차량 충돌 안전성에 대한 연구를 수행하였다. U-채널 세그멘탈 콘크리트 교량은 추가 고정하중을 감소시키고, 측보가 방호벽 역할을 동시에 수행하는 교량이라는 장점을 가지고 있다. 그러나 측보의 파괴는 전체 교량의 붕괴로 이어질 수 있는 위험 요소를 가지고 있다. 따라서, U-채널 세그멘탈 콘크리트 교량 측보의 차량 충돌에 따른 거동분석 및 특성파악이 필요하다고 판단된다. 본 논문에서는 AASHTO LRFD 설계기준 (2007)의 정적 및 동적 차량 충돌해석 기준을 적용하여 U-채널 세그멘탈 콘크리트 교량의 충돌해석을 수행하였다. 정적차량충돌해석의 경우에는 AASHTO LRFD 설계기준 (2007)에서 제시하고 있는 등가정적하중 재하하여 해석을 수행하고, 동적차량충돌의 경우에는 AASHTO LRFD 설계기준 (2007)의 방호벽 충돌실험기준에 근거한 실제 차량을 모델링하여 충돌해석을 통한 안전성 검토를 수행하였다. 검토결과, AASHTO LRFD 설계기준 (2007)을 만족하는 정적 및 동적 충돌하중에 대해 U-채널 교량시스템은 안전성을 확보하고 있는 것으로 판단된다.

시공단계를 고려한 U-Channel Bridge의 슬래브 설계 (Slab Design of U-Channel Bridge Considering Construction Sequence)

  • 최동호;김성재;전선용;김용식;김성원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.265-268
    • /
    • 2008
  • 본 논문에서는 새로운 교량 형식인 U-Channel Bridge(UCB)의 시공단계를 고려하여 그 거동 및 슬래브의 설계방법에 대한 연구를 수행하였다. UCB는 각각의 세그먼트를 공장에서 제작하여 현장에서 조립하여 시공하므로 각 시공단계별로 지지 조건에 변화가 발생한다. UCB의 시공단계를 지지 조건이 변화하는 제작, 운반, 가설빔 거치, 완공의 네 단계로 구분하여 각 단계마다 프레임 요소와 판 요소를 적용하여 적합한 구조해석 모델을 제시하였으며, 구조해석을 수행하고 그 결과를 검토하였다. 검토 결과 슬래브의 해석은 네 단계를 모두 고려하여 수행되어야 하는 것으로 나타났으며 구성된 모델을 적용하여 타당한 슬래브의 설계방법을 제안하였다.

  • PDF

하도 합류부의 기하학적 특성과 유량조건에 따른 수리학적 특성 해석 (Analysis of Hydraulic Characteristics Depending Upon the Geometrical and Discharge Condition at Channel Junctions)

  • 안승섭;최수철;임동희
    • 한국환경과학회지
    • /
    • 제16권4호
    • /
    • pp.495-503
    • /
    • 2007
  • In this study, we took the geometrical character of the river channel junction and hydrologic conditions as independent variables, and hydraulic behavior characteristics as an independent variable. The result, after multiple analysis was carried out, proved that, except for the generating area of the accelerating zone of velocity the accelerating zone and both the main channel and the tributary zone of stagnation the stagnation zone, there was correlation of over 90%. Also, derived presumed expression of the hydraulic characteristics of the junction was applied to the real natural channel - the river channel of the Guem-ho main channel(the A-yang bridge to the Guem-ho bridge). As the result, it proved that it represented hydraulic characteristics relatively well.

Design of Dual-channel Interleaved Phase-shift Full-bridge Converter

  • Che, Yanbo;Wang, Dianmeng;Liu, Xiaokun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1529-1536
    • /
    • 2017
  • A digital dual-channel interleaved phase-shift full-bridge converter is investigated in this paper, and its topology and principle are analyzed. To realize current sharing and stabilize the output voltage, a controller with current sharing loop and closed voltage loop is employed. In addition, current sharing will increase the output current fluctuation and a new digital interleaved driving technology is proposed to reduce the output current ripple. To verify the analysis, simulation and experiments are carried out, which shows the effectiveness of the proposed control strategies.

Theoretical analysis of simply supported channel girder bridges

  • Hu, Hong-Song;Nie, Jian-Guo;Wang, Yu-Hang
    • Structural Engineering and Mechanics
    • /
    • 제56권2호
    • /
    • pp.241-256
    • /
    • 2015
  • Channel girder bridges that consist of a deck slab and two side beams are good choices for railway bridges and urban rail transit bridges when the vertical clearance beneath the bridge is restricted. In this study, the behavior of simply supported channel girder bridges was theoretical studied based on the theory of elasticity. The accuracy of the theoretical solutions was verified by the finite element analysis. The global bending of the channel girder and the local bending of the deck slab are two contributors to the deformations and stresses of the channel girder. Because of the shear lag effect, the maximum deflection due to the global bending could be amplified by 1.0 to 1.2 times, and the effective width of the deck slab for determining the global bending stresses can be as small as 0.7 of the actual width depending on the width-to-span ratio of the channel girder. The maximum deflection and transversal stress due to the local bending are obtained at the girder ends. For the channel girders with open section side beams, the side beam twist has a negligible effect on the deflections and stresses of the channel girder. Simplified equations were also developed for calculating the maximum deformations and stresses.