• 제목/요약/키워드: Bridge Cables

검색결과 247건 처리시간 0.022초

열전달 해석을 통한 케이블교량 화재 시 케이블의 온도변화 분석 (Investigation of Temperature Variation of Bridge Cables under Fire Hazard using Heat Transfer Analysis)

  • 정철헌;최현성;이정휘
    • 한국전산구조공학회논문집
    • /
    • 제32권5호
    • /
    • pp.313-322
    • /
    • 2019
  • 교량에서의 화재는 최근까지도 빈번하게 발생되고 있으며, 특히 케이블교량에서 화재가 발생될 시 케이블에 높은 온도상승으로 인해 케이블에 손상 및 파단이 발생될 수 있다. 본 연구에서는 케이블교량에서 발생될 수 있는 화재 시나리오를 설정하였다. 또한 실물차량 화재실험 결과를 토대로 화재강도모델을 제안하여 대상교량 케이블의 열전달 해석을 수행하였다. 해석 결과 단면적이 작은 케이블에서 더 높은 온도상승이 발생되며, 유조차를 제외한 차종의 경우 내화 성능 기준을 초과하지 않는 결과를 나타내었다. 유조차 화재의 경우 갓길에서 발생될 때 최소 단면적 케이블에서 내화 성능 기준을 초과하는 결과를 보이며, 기준을 초과하는 케이블의 높이는 약 14m로 나타나 이에 따른 대책 및 내화 보강의 필요성을 확인하였다. 본 연구결과를 통해 케이블교량에서 화재가 발생될 때 케이블의 온도변화에 대한 간접적인 평가가 가능한 것을 확인하였으며, 향후 화재 발생 시 바람에 영향을 고려한 열전달 해석과 케이블의 온도상승 시 교량의 사용성에 대한 추가적인 연구가 필요할 것으로 판단된다.

Long-term condition monitoring of cables for in-service cable-stayed bridges using matched vehicle-induced cable tension ratios

  • Peng, Zhen;Li, Jun;Hao, Hong
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.167-179
    • /
    • 2022
  • This article develops a long-term condition assessment method for stay cables in cable stayed bridges using the monitored cable tension forces under operational condition. Based on the concept of influence surface, the matched cable tension ratio of two cables located at the same side (either in the upstream side or downstream side) is theoretically proven to be related to the condition of stay cables and independent of the positions of vehicles on the bridge. A sensor grouping scheme is designed to ensure that reliable damage detection result can be obtained even when sensor fault occurs in the neighbor of the damaged cable. Cable forces measured from an in-service cable-stayed bridge in China are used to demonstrate the accuracy and effectiveness of the proposed method. Damage detection results show that the proposed approach is sensitive to the rupture of wire damage in a specific cable and is robust to environmental effects, measurement noise, sensor fault and different traffic patterns. Using the damage sensitive feature in the proposed approach, the metrics such as accuracy, precision, recall and F1 score, which are used to evaluate the performance of damage detection, are 97.97%, 95.08%, 100% and 97.48%, respectively. These results indicate that the proposed approach can reliably detect the damage in stay cables. In addition, the proposed approach is efficient and promising with applications to the field monitoring of cables in cable-stayed bridges.

Application of magnetoelastic stress sensors in large steel cables

  • Wang, Guodun;Wang, Ming L.;Zhao, Yang;Chen, Yong;Sun, Bingnan
    • Smart Structures and Systems
    • /
    • 제2권2호
    • /
    • pp.155-169
    • /
    • 2006
  • In this paper, the application of magnetoelasticity in static tension monitoring for large steel cables is discussed. Magnetoelastic (EM) stress sensors make contact-free tension monitoring possible for hanger cables and post-tensioned cables on suspension and cable-stayed bridges. By quantifying the correlation of magnetic relative permeability with tension and temperature, the EM sensors inspect the load levels in the steel cables. Cable tension monitoring on Qiangjiang (QJ) 4th Bridge demonstrates the reliability of the EM sensors.

Simulation of vibrations of Ting Kau Bridge due to vehicular loading from measurements

  • Au, F.T.K.;Lou, P.;Li, J.;Jiang, R.J.;Zhang, J.;Leung, C.C.Y.;Lee, P.K.K.;Lee, J.H.;Wong, K.Y.;Chan, H.Y.
    • Structural Engineering and Mechanics
    • /
    • 제40권4호
    • /
    • pp.471-488
    • /
    • 2011
  • The Ting Kau Bridge in Hong Kong is a cable-stayed bridge comprising two main spans and two side spans. The bridge deck is supported by three towers, an end pier and an abutment. Each of the three towers consists of a single reinforced concrete mast strengthened by transverse cables and struts. The bridge deck is supported by four inclined planes of cables emanating from anchorages at the tower tops. In view of the heavy traffic on the bridge, and threats from typhoons and earthquakes originated in areas nearby, the dynamic behaviour of long-span cable-supported bridges in the region is always an important consideration in their design. Baseline finite element models of various levels of sophistication have been built not only to match the bridge geometry and cable forces specified on the as-constructed drawings but also to be calibrated using the vibration measurement data captured by the Wind and Structural Health Monitoring System. This paper further describes the analysis of axle loading data, as well as the generation of random axle loads and simulation of vibrations of the bridge using the finite element models. Various factors affecting the vehicular loading on the bridge will also be examined.

시공성 및 경제성을 고려한 사장교 부반력 제어 연구 : 베트남 밤콩 사장교 사례 (A Study on Controlling the Negative Reaction of Cable Stayed Bridge Considering Constructability and Economy : Vam Cong Cable Stayed Bridge in Vietnam)

  • 이용진;노병철;김창교;배상운
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권5호
    • /
    • pp.87-95
    • /
    • 2014
  • 사장교는 다수의 케이블에 의해 지지되어 복잡한 거동을 하는 구조체이며, 측경간 케이블에 의해 단부교각에서 부반력이 발생한다. 이를 해결하기 위해 적절한 측경간비를 설정해야 하고 앵커교각의 부반력 대책을 강구해야 한다. 부반력 제어 대책으로는 중간교각, 카운터 웨이트 등을 설치하는 방안이 있으며 이에 따라 사장교의 구조계가 결정된다. 밤콩교량은 타당성 검토 단계에서 5경간 사장교로 계획되었다. 하지만 시공성 및 경제성 등의 문제로 실시설계 단계에서 3경간 사장교로 변경되었다. 시공성을 확보하기 위하여 중간교각을 배제하였고, 이에 따른 부반력을 제어하기 위해 측경간비를 증가시켰다. 그 결과, 원안 설계에 비하여 시공성, 구조적 안전성, 효율성을 확보할 수 있었다.

PCCAP을 이용한 장대 사장교의 버페팅 해석 (Beffeting Analysis of Long Span Cable-stayed Bridge using PCCAP)

  • 유원진;이석용;남효승;이완수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.202-208
    • /
    • 2003
  • In this study, a time domain analysis is presented for investigation on the buffeting response of cable-stayed bridge during both erection and completion stages. The main span length and width of deck are 520 m and 15.1m, each. Since the ratio of span over width is 34.44, aerodynamic stability of the bridge during erection is expected to dominate the safety of the bridge in construction stage. Several conclusions regarding different construction stages and temporary wind cables are obtained.

  • PDF

Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses

  • Cho, Soojin;Jo, Hongki;Jang, Shinae;Park, Jongwoong;Jung, Hyung-Jo;Yun, Chung-Bang;Spencer, Billie F. Jr.;Seo, Ju-Won
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.461-480
    • /
    • 2010
  • This paper analyses the data collected from the $2^{nd}$ Jindo Bridge, a cable-stayed bridge in Korea that is a structural health monitoring (SHM) international test bed for advanced wireless smart sensors network (WSSN) technology. The SHM system consists of a total of 70 wireless smart sensor nodes deployed underneath of the deck, on the pylons, and on the cables to capture the vibration of the bridge excited by traffic and environmental loadings. Analysis of the data is performed in both the time and frequency domains. Modal properties of the bridge are identified using the frequency domain decomposition and the stochastic subspace identification methods based on the output-only measurements, and the results are compared with those obtained from a detailed finite element model. Tension forces for the 10 instrumented stay cables are also estimated from the ambient acceleration data and compared both with those from the initial design and with those obtained during two previous regular inspections. The results of the data analyses demonstrate that the WSSN-based SHM system performs effectively for this cable-stayed bridge, giving direct access to the physical status of the bridge.

사장교 케이블 동특성 평가를 위한 케이블 가진시스템 개발 (Development of Cable Excitation System for Evaluating Dynamic Characteristics of Stay Cables)

  • 김남식;정운;서주원;안상섭
    • 한국지진공학회논문집
    • /
    • 제7권4호
    • /
    • pp.71-79
    • /
    • 2003
  • 사장교에서 케이블은 교량 전체에 있어서 매우 중요한 요소이다. 차량, 바람 혹은 풍우에 의한 케이블의 진동은 교량의 안전성과 사용성을 감소시키는 주요 원인이 되어왔으며 이러한 문제를 해결하는 효과적인 방법중의 하나는 케이블 댐퍼를 설치하는 것이다. 이 케이블 댐퍼를 최적으로 설계하기 위해서는 케이블의 동특성을 정확하게 평가해야 하며 케이블 동특성치를 얻기 위해서는 정확한 가진이 필요하다. 따라서 본 연구에서는 케이블 가진시스템을 개발하고 성능을 평가하기 위해 케이블 가진시스템의 운동방정식을 유도하였으며, 케이블 가진기를 케이블 모형에 설치하여 정현진동실험과 공진진동실험을 수행하여 케이블의 동특성을 효과적으로 구하였다.

Stability analysis of steel cable-stayed bridges

  • Tang, Chia-Chih;Shu, Hung-Shan;Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제11권1호
    • /
    • pp.35-48
    • /
    • 2001
  • The objective of this study is to investigate the stability behavior of steel cable-stayed bridges by comparing the buckling loads obtained by means of finite element methods with eigen-solver. In recent days, cable-stayed bridges dramatically attract engineers' attention due to their structural characteristics and aesthetics. They require a number of design parameters and present a high degree of static indetermination, especially for long span bridges. Cable-stayed bridges exhibit several nonlinear behaviors concurrently under normal design loads due to the individual nonlinearity of substructures such as the pylons, stay cables, and bridge deck, and their interactions. The geometric nonlinearities arise mainly from large displacements of cables. Strong axial and lateral forces acting on the bridge deck and pylons cause structural nonlinear behaviors. The interaction is among the substructures. In this paper, a typical three-span steel cable-stayed bridge with a variety of design parameters has been investigated. The numerical results indicate that the design parameters such as the ratio of $L_1/L$ and $I_p/I_b$ are important for the structural behavior, where $L_1$ is the main span length, L is the total span length of the bridge, $I_p$ is the moment of inertia of the pylon, and $I_b$ is the moment of inertia of the bridge deck. When the ratio $I_p/I_b$ increases, the critical load decreases due to the lack of interaction among substructures. Cable arrangements and the height of pylon are another important factors for this type of bridge in buckling analysis. According to numerical results, the bridges supported by a pylon with harp-type cable arrangement have higher critical loads than the bridges supported by a pylon with fan-type cable arrangement. On contrary, the shape of the pylon does not significantly affect the critical load of this type of bridge. All numerical results have been non-dimensionalized and presented in both tabular and graphical forms.

Assessment of deformations and internal forces in the suspension bridge under eccentric live loads: Analytical algorithm

  • Zhang, Wenming;Lu, Xiaofan;Chang, Jiaqi;Tian, Genmin;Xia, Lianfeng
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.749-765
    • /
    • 2021
  • Suspension bridges bear large eccentric live loads in rush hours when most vehicles travel in one direction on the left or right side of the bridge. With the increasing number and weight of vehicles and the girder widening, the eccentric live load effect on the bridge behavior, including bending and distortion of the main girder, gets more pronounced, even jeopardizing bridge safety. This study proposes an analytical algorithm based on multi-catenary theory for predicting the suspension bridge responses to eccentric live load via the nonlinear generalized reduced gradient method. A set of governing equations is derived to solve the following unknown values: the girder rigid-body displacement in the longitudinal direction; the horizontal projection lengths of main cable's segments; the parameters of catenary equations and horizontal forces of the side span cable segments and the leftmost segments of middle span cables; the suspender tensions and the bearing reactions. Then girder's responses, including rigid-body displacement in the longitudinal direction, deflections, and torsion angles; suspenders' responses, including the suspender tensions and the hanging point displacements; main cables' responses, including the horizontal forces of each segment; and the longitudinal displacement of the pylons' tower top under eccentric load can be calculated. The response of an exemplar suspension bridge with three spans of 168, 548, and 168 m is calculated by the proposed analytical method and the finite element method in two eccentric live load cases, and their results prove the former's feasibility. The nonuniform distribution of the live load in the lateral direction is shown to impose a greater threat to suspension bridge safety than that in the longitudinal direction, while some other specific features revealed by the proposed method are discussed in detail.