• Title/Summary/Keyword: Brick Wall

Search Result 83, Processing Time 0.022 seconds

흙주거의 건축적 특성 및 이용현황 분석 (A Study on Architectural Features and Current Status of Earth Housing)

  • 김정규;정주성
    • 한국주거학회논문집
    • /
    • 제17권1호
    • /
    • pp.97-105
    • /
    • 2006
  • The purposes of this study are to find out the current status and features of earth housing, and to explore users' level of satisfaction and needs of improvement about earth housing. Primary findings are as follows: (1) The area of earth housing is generally 25-34 pyong and the construction cost of earth housing is usually 3,000,000-3,400,000 won per pyong. (2) The age of earth house users is generally forties, fifties, and sixties. And their occupation is usually retiree and farmer. The age of earth based pension users is generally twenties and thirties. (3) The construction method of earth housing is usually earth brick structure reinforced with wood structure and earth brick structure(adobe). (4) The finish of outer wall is generally earth brick laying and earth plaster. And the finish of inner wall is usually wall paper and earth plaster. Roof tile and asphalt shingle is frequently observed as roof finish. (5) Users' satisfaction about earth housing is investigated high level. Especially, the satisfaction degrees about faculty of humidity control, stink elimination, prevention from sick house syndrome, support for psychological stabilization and deep sleep are observed very highly. (6) Reduction of construction cost and prevention of crack is investigated as needs of improvement about earth housing.

Experimental investigation of the shear strength of hollow brick unreinforced masonry walls retrofitted with TRM system

  • Thomoglou, Athanasia K.;Karabinis, Athanasios I.
    • Earthquakes and Structures
    • /
    • 제22권4호
    • /
    • pp.355-372
    • /
    • 2022
  • The study is part of an experimental program on full-scale Un-Reinforced Masonry (URM) wall panels strengthened with Textile reinforced mortars (TRM). Eight brick walls (two with and five without central opening), were tested under the diagonal tension (shear) test method in order to investigate the strengthening system effectiveness on the in-plane behaviour of the walls. All the URM panels consist of the innovative components, named "Orthoblock K300 bricks" with vertical holes and a thin layer mortar. Both of them have great capacity and easy application and can be constructed much more rapidly than the traditional bricks and mortars, increasing productivity, as well as the compressive strength of the masonry walls. Several parameters pertaining to the in-plane shear behaviour of the retrofitted panels were investigated, including shear capacity, failure modes, the number of layers of the external TRM jacket, and the existence of the central opening of the wall. For both the control and retrofitted panels, the experimental shear capacity and failure mode were compared with the predictions of existing prediction models (ACI 2013, TA 2000, Triantafillou 1998, Triantafillou 2016, CNR 2018, CNR 2013, Eurocode 6, Eurocode 8, Thomoglou et al. 2020). The experimental work allowed an evaluation of the shear performance in the case of the bidirectional textile (TRM) system applied on the URM walls. The results have shown that some analytical models present a better accuracy in predicting the shear resistance of all the strengthened masonry walls with TRM systems which can be used in design guidelines for reliable predictions.

The effect of mortar type and joint thickness on mechanical properties of conventional masonry walls

  • Zengin, Basak;Toydemir, Burak;Ulukaya, Serhan;Oktay, Didem;Yuzer, Nabi;Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.579-585
    • /
    • 2018
  • Masonry walls are of a complex (anisotropic) structure in terms of their mechanical properties. The mechanical properties of the walls are affected by the properties of the materials used in wall construction, joint thickness and the type of masonry bond. The carried-out studies, particularly in the seismic zones, have revealed that the most of the conventional masonry walls were constructed without considering any engineering approach. Along with that, large-scale damages were detected on such structural elements after major earthquake(s), and such damages were commonly occurred at the brick-joint interfaces. The aim of this study was to investigate the effect of joint thickness and also type of mortar on the mechanical behavior of the masonry walls. For this aim, the brick masonry walls were constructed through examination of both the literature and the conventional masonry walls. In the construction process, a single-type of brick was combined with two different types of mortar: cement mortar and hydraulic lime mortar. Three different joint thicknesses were used for each mortar type; thus, a total of six masonry walls were constructed in the laboratory. The mechanical properties of brick and mortars, and also of the constructed walls were determined. As a conclusion, it can be stated that the failure mechanism of the brick masonry walls differed due to the mechanical properties of the mortars. The use of bed joint thickness not less than 20 mm is recommended in construction of conventional masonry walls in order to maintain the act of brick in conjunction with mortar under load.

Analysis of stress dispersion in bamboo reinforced wall panels under earthquake loading using finite element analysis

  • Kumar, Gulshan;Ashish, Deepankar K.
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.451-461
    • /
    • 2018
  • Present study is mainly concerned about the idea of innovative utilization of bamboo in modern construction. Owing to its compatible mechanical properties, a beneficial effect of its use in reinforced concrete (RC) frame infills has been observed. In this investigation, finite element analyses have been performed to examine the failure pattern and stress distribution pattern through the infills of a moment resisting RC frame. To validate the pragmatic use of bamboo reinforced components as infills, earthquake loading corresponding to Nepal earthquake had been considered. The analysis have revealed that introduction of bamboo in RC frames imparts more flexibility to the structure and hence may causes a ductile failure during high magnitude earthquakes like in Nepal. A more uniform stress distribution throughout the bamboo reinforced wall panels validates the practical feasibility of using bamboo reinforced concrete wall panels as a replacement of conventional brick masonry wall panels. A more detailed analysis of the results have shown the fact that stress concentration was more on the frame components in case of frame with brick masonry, contrary to the frame with bamboo reinforced concrete wall panels, in which, major stress dispersion was through wall panels leaving frame components subjected to smaller stresses. Thus an effective contribution of bamboo in dissipation of stresses generated during devastating seismic activity have been shown by these results which can be used to concrete the feasibility of using bamboo in modern construction.

CR-39 라돈컵을 이용한 국산 전축자재의 라돈-222 방출율 측정 (Measurement of Radon-222 Exhalation Rate from Building Materials by Using CR-39 Radon Cup)

  • 장시영;하정우;이병헌
    • Journal of Radiation Protection and Research
    • /
    • 제16권1호
    • /
    • pp.15-24
    • /
    • 1991
  • CR-39 플라스틱 핵비적검출기를 라돈검출기로 내장한 멤브레인 필터컵(일명 : CR-39 라돈컵)을 이용하여 일부 국산건축자재의 라돈방출율을 측정하였다. 표준라듐선원을 이용한 라돈컵의 교정 실험을 수행하여 얻은 CR-39 검출기의 라돈검출인자는 $0.164{\pm}0.005(tracks \;cm^{-2}/Bq\;d\;m^{-3})$였으며 타 연구자들의 발표결과와 잘 일치하였다. 일부 건축자재(모래벽돌, 적벽돌, 화장석판, 콘크리트 덩어리, 건물바닥과 내벽)에 CR-39 라돈컵을 2개월 동안 기밀 부착하여 라돈방출율을 측정한 결과, 라돈방출율은 모래벽돌에서 평균$(75.0{\pm}5.5){\times}10^{-6}(Bq/m^2-s)$, 화강석판에서 $(6.8{\pm}2.9){\times}10^{-6}Bq/m^2-s)$로 10배정도의 차이를 보였으며, 모래벽돌>콘크리트바닥>콘크리트덩어리>건물벽>적벽돌>화강석 판의 순서를 보였다. 본 연구 결과, CR-39 라돈컵에 의해서도 건축자재의 라돈방출율을 효과적으로 측정할 수 있음이 입증하였다.

  • PDF

Modeling of unreinforced brick walls under in-plane shear & compression loading

  • Kalali, Arsalan;Kabir, Mohammad Zaman
    • Structural Engineering and Mechanics
    • /
    • 제36권3호
    • /
    • pp.247-278
    • /
    • 2010
  • The study of the seismic vulnerability of masonry buildings requires structural properties of walls such as stiffness, ultimate load capacity, etc. In this article, a method is suggested for modeling the masonry walls under in-plane loading. At the outset, a set of analytical equations was established for determining the elastic properties of an equivalent homogeneous material of masonry. The results for homogenized unreinforced brick walls through detailed modeling were compared in different manners such as solid and perforated walls, in-plane and out-of-plane loading, etc, and it was found that this method provides suitable accuracy in estimation of the wall linear properties. Furthermore, comparison of the results of proposed modeling with experimental out coming indicated that this model considers the non linear properties of the wall such as failure pattern, performance curve and ultimate strength, and would be appropriate to establish a parametric study on those prone factors. The proposed model is complicated; therefore, efforts need to be made in order to overcome the convergency problems which will be included in this study. The nonlinear model is basically semi-macro but through a series of actions, it can be simplified to a macro model.

광주구수피아여학교 윈스브로우홀의 변화와 원형추정 연구 (A Study on Process of Change and Assumption of Archetype of Winsborough Hall at Speer Girls' School in Gwangju)

  • 신웅주;성대철
    • 한국농촌건축학회논문집
    • /
    • 제14권4호
    • /
    • pp.97-105
    • /
    • 2012
  • Winsborough Hall built by Martin L. Winehart who was the missionary of the Presbyterian Church of America in 1927 was built by Mrs. Winsborough's birthday contribution. Winsborough Hall was clearly divided into the original form built in 1927 and remodelled form by extension. Most of walls were constructed with several kinds of bricks for both sides and opening in the original form and remodelled form. Each room divided by inner wall was kept with original form because it is difficult to remodel it on the characteristics of building. But, it was confirmed through the related literatures that security of opening at some rooms and annexation of rooms through removal of the wall on the 2nd floor which was relatively easy to transform wall compared to the first floor were made. Variability of the wall affected the truss structure of roof and it created rare double truss structure. Architectural value of Winsborough Hall was in its first architectural trial using red brick in Gwangju region since 1920s. It suggested that it was differential architectural trial from Korean-Western mixed building constructed by the missionaries from 1940 to 1910 and buildings made of gray bricks prevailed from 1911 to 1920 and it showed the advancement in the architectural structure and materials.

투명단열재가 적용된 축열벽 시스템의 최적구성 선정에 관한 연구 (A study on the Optimum Design Configuration of Passive Solar TI-wall system)

  • 김병수;윤종호;윤용진;백남춘
    • KIEAE Journal
    • /
    • 제3권2호
    • /
    • pp.37-44
    • /
    • 2003
  • The aim of this study was to analyze the thermal performance through Test-Cell of TI-wall in domestic climate. This study was carried out as follows: 1) The TI-wall was studied for ability to reduce heat loss through the building envelope and analyzed to TIM properties. 2) Test models of TI-wall were designed through the investigation of previous paper and work, measured for winter and spring, and the thermal effects were analyzed. The type of the TIM used in test model is small-celled(diameter 4mm and thickness 50mm) capillary and cement brick(density $1500kg/m^3$) was used by thermal mass. 3) Test-cell of TI-wall was calibrated from measured data and the dynamic simulation program ESP-r 9.0. In these simulations, the measured climate conditions of TaeJon were used as outdoor conditions, and the simulation model of Test-cell was developed. 4) The sensitivity analysis is executed in various aspects with standard weather files and ESP-r 9.0, and then most suitable system of TI-wall are predicted. Finally, The suitable system of TI-wall was analysed according to sizes of air gap, kinds, thickness, and the surface absorption of therm wall. The result is following. In TI-wall, Concrete is better than cement brick, at that time the surface absorption is 95%, and the most efficient thickness is 250mm. As smaller of a air gap, as reducer of convection heat loss, it is efficient for heating energy. However, ensuring of a air gap at least more than 50mm is desirable for natural ventilation in Summer.

중량벽체의 차음특성에 관한 실험적 연구 (An Experimental Study on the Sound Insulation Characteristics of Heavyweight Walls)

  • 김선우;이태강;송민정
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1078-1085
    • /
    • 1998
  • This study is carried out to investigate the characteristics of sound insulation performances for masonry walls. PC walls and ALC walls. For these purposes. 17 types of masonry walls were selected and tested in accordance with KS F 2808 at reverberation room The sound insulation performance of 8" cement block walls are graded with D-45 ∼ D-55 which are to be evaluated very favorable grade. 4" cement block walls are D-30 ∼ D-40. 1 B cement brick walls are D-40∼D-50 favorable grade. 0.5 B brick walls are D-30∼D-45. 150 mm PC wall is D-50. and ALC walls(150 mm, 200 mm) are D-30∼D-45.

  • PDF