• Title/Summary/Keyword: Brick Type

Search Result 102, Processing Time 0.023 seconds

The Contents of Organic Acid and Fatty Acid in Traditional Soy Sauce Prepared from Meju under Different Formations (형상이 다른 메주로 제조한 재래식 간장 중의 유기산과 지방산 조성)

  • 서정숙;이택수
    • The Korean Journal of Food And Nutrition
    • /
    • v.8 no.3
    • /
    • pp.206-211
    • /
    • 1995
  • Three kinds of soy sauce were prepared using the brick type of conventional menu(A), the brick type of meju of Aspergillus oryzae (B) and the grain type of menu Aspergillus oryzae (C). Organic acid and fatty acid were analyzed In accordance to aging time of those products Citric acid, lactic acid, acetic acid, malonic acid, butyric acid, oxalic acid, and propionic acid were dejected in all kinds of soy sauce. The content of lactic acid was shown higher than those of any other organic acids. The content of lactic acid was much higher at beginning of preparation and at 180 days in soy sauce B than any other conditions. The content of acetic acid was much higher at beginning of preparation, at 120 days in soy sauce C and at 180 days in soy sauce B than any other conditions. The content of citric acid was highest at beginning preparation in soy sauce C, and that was highest in soy sauce B except beginning preparation to 120 days. Myristic, palmitic, stearic, oleic, linoliic, linolenic, arachidonic acid were detected in all kinds of soy sauce after 180 days. The content of oleic acid were shown 32.59∼53.79% in soy sauce B and in soy sauce C. The content of stearic acid was shown 49.7oA In soy sauce A. Linolinec acid and arachidonic acid were detected in only soy sauce C.

  • PDF

Quality Characteristics of Kochujang Prepared with Different Meju Fermented with Aspergillus sp. and Bacillus subtilis

  • Kim, Yong-Suk;Oh, Byoung-Hak;Shin, Dong-Hwa
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.527-533
    • /
    • 2008
  • For preparation of high quality kochujang by the traditional fermentation method, 4 types of kochujang were prepared with brick- or grain-shaped meju fermented with different strains (Aspergillus sojae, Aspergillus oryzae+Bacillus subtilis). After 100 days of fermentation at $25^{\circ}C$, the moisture, pH, salt, and ethanol content of kochujang were 40.52-43.20%, 4.71-4.82, 8.7-9.1%, and 0.75-0.94%, respectively, showing slight differences according to the strains and shapes of meju. Titratable acidities were slightly increased for up to 60 days of fermentation. The amino-type nitrogen content of kochujang prepared with brick-shaped meju (A. oryzae+B. subtilis) was the highest (164.20 mg%) among all of the kochujang types. The redness (a) value of kochujang prepared with brick-shaped meju (A. sojae) were higher (19.08) than those of other treatments (18.37-18.59). Sensory evaluation of kochujang prepared with grain-shaped meju (A. sojae) showed the highest scores for color and overall acceptability, 'at $6.43{\pm}1.87$ and $6.29{\pm}1.44$, respectively. It was estimated that high quality kochujang could be made by using meju fermented with selected strains.

Fabrication of Lightweight Aggregates Using Fly Ash from Coal Burning Heat Power Plant (화력발전소 발생 플라이애쉬를 이용한 인공골재 제조)

  • Yoon Su-Jong
    • Journal of Powder Materials
    • /
    • v.13 no.2 s.55
    • /
    • pp.102-107
    • /
    • 2006
  • Recycling industrial wastes such as fly ash from a coal burning heat power plant and shell from an oyster farming were investigated to prevent environment contamination as well as to enhance the value of recycling materials. In this study, the lightweight aggregates and the red bricks were fabricated from fly ashes with other inorganic materials and wastes. The starting materials of the lightweight aggregate were fly ash powder and water glass, and the compacts of these materials were heat treated at $1100^{\circ}C$. The fabricated lightweight aggregates had low bulk density, $0.9-1.2\;g/cm^3$, hence floated on the water and had the strength of 7.0-11.0 MPa and the modulus of 2900-3300 MPa which indicates it has enough strength as the aggregate. Another type of the light weight aggregate was prepared from fly ashes, shell powders and clays. The bulk density, porosity, and compressive strength of these aggregates were $1.19-1.34\;g/cm^3,\;18.3{\sim}56.1%$ and 5-12 MPa, respectively. The addition of a small amount of fly ash powder prevented hydration of the light weight aggregates. The red brick was also fabricated from the fly ash containing materials. It is suitable for the brick facing of a building as it has moderate strength and low water absorption rate.

Mechanical performance of fiber-reinforced recycled refractory brick concrete exposed to elevated temperatures

  • Nematzadeh, Mahdi;Baradaran-Nasiria, Ardalan
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.19-35
    • /
    • 2019
  • In this paper, the effect of the type and amount of fibers on the physicomechanical properties of concrete containing fine recycled refractory brick (RRB) and natural aggregate subjected to elevated temperatures was investigated. For this purpose, forta-ferro (FF), polypropylene (PP), and polyvinyl alcohol (PVA) fibers with the volume fractions of 0, 0.25, and 0.5%, as well as steel fibers with the volume fractions of 0, 0.75, and 1.5% were used in the concrete containing RRB fine aggregate replacing natural sand by 0 and 100%. In total, 162 concrete specimens from 18 different mix designs were prepared and tested in the temperature groups of 23, 400, and $800^{\circ}C$. After experiencing heat, the concrete properties including the compressive strength, ultrasonic pulse velocity (UPV), weight loss, and surface appearance were evaluated and compared with the corresponding results of the reference (unheated) specimens. The results show that using RRB fine aggregate replacing natural fine aggregate by 100% led to an increase in the concrete compressive strength in almost all the mixes, and only in the PVA-containing mixes a decrease in strength was observed. Furthermore, UPV values at $800^{\circ}C$ for all the concrete mixes containing RRB fine aggregate were above those of the natural aggregate concrete specimens. Finally, regarding the compressive strength and UPV results, steel fibers demonstrated a better performance relative to other fiber types.

Characteristics of Redmud Ceramics by Sintering Temperature and Raw Materials of Clay Bricks (점토벽돌 제조 원료 종류에 따른 소성온도별 레드머드 세라믹의 특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.199-206
    • /
    • 2019
  • This study aims to recycle redmud which is a byproduct in the alumina industry. Redmud ceramics were prepared according to the type of raw materials by blending redmud with the raw materials used in the conventional clay bricks. In this paper, the compressive strength, water absorption ratio, and shrinkage of redmud ceramics prepared by mixing clay bricks were evaluated. Compressive strength and absorption ratio of redmud ceramics were compared with the clay brick criteria of KS L 4201. At the firing temperature of $1200^{\circ}C$, the specimens containing redmud only and the redmud with sandy loam and black clay were found to satisfy the 1st class of clay brick. The quality standard of compressive strength and absorption ratio was obtained by firing redmud with black clay and sandy loam at $1200^{\circ}C$. Also, when the redmud was mixed with black clay and feldspar, the 2nd class was satisfied when the sample was fired at $1100^{\circ}C$.

Cyclic compressive loading-unloading curves of brick masonry

  • AlShebani, Milad M.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.375-382
    • /
    • 2000
  • Experimental investigation into the cyclic behaviour of sand plast brick masonry was performed on forty two square panels. The panels were subjected to cyclic uniaxial compression for two cases of loading: normal to bed joint and parallel to bed joint. Experimental data were used to plot the unloading-reloading curves for the entire range of the stress-strain curve. Mathematical expressions to predict the reloading and unloading stress-strain curves at various values of residual strain are proposed. A simple parabola and an exponential type formula are found adequate to model the unloading and reloading curves respectively. The models account for the potential effects of residual strain on these curves. Comparison of test results with the proposed mathematical expression shows good correspondence.

Natural frequency error estimation for 3D brick elements

  • Stephen, D.B.;Steven, G.P.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.137-148
    • /
    • 1997
  • In computing eigenvalues for a large finite element system it has been observed that the eigenvalue extractors produce eigenvectors that are in some sense more accurate than their corresponding eigenvalues. From this observation the paper uses a patch type technique based on the eigenvector for one mesh quality to provide an eigenvalue error indicator. Tests show this indicator to be both accurate and reliable. This technique was first observed by Stephen and Steven for an error estimation for buckling and natural frequency of beams and two dimensional in-plane and out-of-plane structures. This paper produces and error indicator for the more difficult problem of three dimensional brick elements.

Studies on Damage Characteristics of Gyeongju Bunhwangsa Stone Brick Pagoda (경주 분황사 모전석탑의 손상 특성 연구)

  • Do, Jin Young;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.149-159
    • /
    • 2018
  • The Gyeongju Bunhwangsa Stone Brick Pagoda, which was built with bricks of andesite, is the oldest brick stone pagoda of Silla period. The damage patterns in the stone pagoda are pollutants such as white crust, black crust, discoloration, soil adsorption, and microorganisms, and repair materials. The damage pattern of structural factors in the Stone Brick Pagoda is a bulging phenomenon. According to the X-ray diffraction analysis, white crust are mainly consist of calcite ($CaCO_3$) and thermonatrite ($Na_2CO_3{\cdot}H_2O$) that evaporite finds in nature. Damage pattern varies depending on location of stone pagoda. The pollutants are first story body of pagoda. The microorganisms are confirmed at base, lion statues, first and second story capstone, and repair materials observed at base. The bulging phenomenon appeared on the first story body of the pagoda. Occupancy rates by damage type were higher in the order of microorganisms, pollutants, repair material, bulging phenomenon, and peeling. The highest percentage of individual damage patterns were black microorganisms (39.3%), followed by lichen (17.9%), discoloration (8.0%), white crust (5.5%), cement mortar (5.1%) and peeling (3.1%).

Evaluation of Recyclability at Varied Blending Ratios of Gable Top and Aseptic Brick Carton (상온보존팩과 냉장보존팩의 배합비율에 따른 재활용 특성 평가)

  • Seo, Jin Ho;Lee, Tai Ju;Lee, Dong Jin;Lee, Myoung Ku;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.123-129
    • /
    • 2015
  • There are two kinds of cartons for beverage packaging, one is aseptic brick (AB) type and the other is gable top (GT). In this study, AB and GT were used as a raw material of recycled paper to investigate the recyclability at their varied blending ratios. Fiber consistency at pulping decreased as the blending ratio of AB increased. As a result, a lot of fines were generated from AB and flakes from GT increased because shear force in pulper decreased. Bulk of handsheets was more than $2.0cm^3/g$, and ISO brightness decreased as the blending ratio of AB increased. The best condition to recycle beverage cartons is to discriminate each cartons separately because of differences in the composition. However, there are problems such as the limit of the collection system and social costs. Therefore, it is assumed that the blending ratios of AB should be adjusted at less than 20% for effective recycling of beverage cartons.

Analysis of Heat Transfer Characteristics by Material Based on Closed Conditions Using Acrylic Hemispheres (II): Comparison by Type of Building Structural Materials (아크릴 반구를 이용한 밀폐조건에 따른 재료별 열 이동특성 분석(II): 건축구조재 종류에 따른 비교)

  • YANG, Seung Min;KWON, Jun Hyuck;KIM, Phil Lip;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.710-721
    • /
    • 2020
  • This study used a building model made up of cement, brick, and wood to measure temperature and relative humidity for 3 days in a closed environment with a diameter of 900 mm, and performed a comparative analysis of the effect of types of building materials on the indoor temperature environment and heat transfer characteristics. The water installed inside the building model represented the person in the room and was used to assess how the environment effects the person. Wooden building model showed the lowest heat loss due to the higher thermal insulation properties than cement and brick buildings. The thermal comfort of each building model was calculated using temperature and relative humidity, and the wooden building model created a more pleasant environment than the cement and brick building models.