• Title/Summary/Keyword: Brick Pavement

Search Result 13, Processing Time 0.021 seconds

Psychological Characteristic Analysis of Brick Pavement Patterns in Rural Area (농촌공간에 적용된 벽돌포장 줄눈의 심리적 특성 분석)

  • Kim, Dae-Hyun;Shin, Ji-Hoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Recently, brick pavement were widely introduced on the pavement in rural area. A variety of vision effects can be created from patterns of brick pavement. However, in most of brick pavement works, human psychological characteristics were not concerned. The purpose of this research was to discover psychological effect on brick pavement pattern. The results of the research can be summarized as follows: 1)Psychological impression on brick pavement pattern is similar among man and woman groups. 2)Stack bond and running bond pattern have a simple, relaxed, organized, and comfortable psychological characteristics. Basket weave & stack bond pattern has a simple and organized psychological characteristic. Herringbone bond pattern has a complex, dislike and uncomfortable psychological characteristic. Pinwheel bond pattern has a highly complex psychological characteristic. Basket weave and Basket weave variation bond pattern have a common psychological characteristic. 3)Employment of brick pavement pattern on this research is not highly preferred, hence it is necessary to develop a brick pavement patterns that have human psychological characteristics be concerned.

Thermal Characteristics of Permeable Block Pavements for Landscape Construction (조경용 투수성 블록포장의 열특성)

  • Han, Seung-Ho;Ryu, Nam-Hyong;Yoon, Yong-Han;Kim, Won-Tae;Kang, Jin-Hyoung
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.573-580
    • /
    • 2008
  • This study aims to measure and to analyze the characteristics of thermal environment of the various permeable pavement materials such as a break stone pavement (Green block cubic), soil protection pavement (Soil tector), soil cement pavement and ceramic brick pavement under the summer outdoor environment. The thermal environment characteristics measured in the study includes the changes of surface temperature during the day, and long and short wave radiation of each pavement surface. The experimental condition is based on the data on the hottest temperature (August 9, 2006, $37.1^{\circ}C$) of the year. The albedo was the highest on the break stone pavement(0.8) from 12:00 to 14:00. The albedo of the ceramic brick pavement, a soil tector pavement and soil cement pavement were 0.35, 0.29 and 0.27 from 12:00 to 14:00, respectively. The peak surface temperature and long wave radiation was the highest on the soil protection pavements($56.6^{\circ}C$/627 W/$m^2$). The peak surface temperatures and long wave radiation on the ceramic brick pavement, a stone brick pavement and soil cement pavement were $51.7^{\circ}C$/627 W/$m^2$, $48.8^{\circ}C$/607 W/$m^2$ and $45.9^{\circ}C$/582 W/$m^2$, respectively. The heat environment was better on the break stone pavement than on the other pavements. This is mainly due to the high albedo of the break stone pavement(0.8) while the albedo value of a ceramic brick pavement, a soil tactor pavement and soil cement pavement were 0.35. 0.29 and 0.27. Large heat capacity($2,629kJ/m^3{\cdot}K$) of the stone brick pavements also contributes to this difference. The heat environment was better on the soil cement pavement than the soil tector pavement. This is mainly due to the evaporation of the soil cement pavement while the active evaporation of the soil tactor pavement was not continued after two days from the rainfall event. To improve the thermal environments in the urban area, it is recommended to raise the albedo of the pavements by brightening the surface color of the pavement materials. Further studies on the pavement materials and the construction methods which can enhance the continuous evapotranspiration from the pavements surface are needed.

The Effect of Pervious Pavement on Reducing the Surface Runoff (투수성 포장재의 우수 표면유출 저감 효과)

  • Lee, Chun-Seok;Ryu, Nam-Hyung;Han, Seung-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.6
    • /
    • pp.26-37
    • /
    • 2008
  • The purpose of the study was to evaluate the effect of pervious pavements on reducing the surface runoff caused by rainfall. The surface runoff from twelve steel experimental beds with different pavement had been recorded every minute from May to September 2008, by the measuring system of tipping buckets(0.1mm/count) and data aquisition systems(National Instrument's Labview and DAQ boards & Autonics PR12-4). The dimension of the experimental bed was $1.5m(W){\times}2.0m(L){\times}0.6m(D)$ and eleven different kinds of vegetational(grass, grass+cubic stone, grass+hole brick), modular(brick, cubic stone, small cubic stone, wood block, interlocking block, clay brick, granular clay brick) and granular(naked soil, gravel) paving materials and concrete were applied for the comparison. Six rain events with depth over 30mm were selected and compared. The maximum depth of the rainfall selected was 137.5mm for 28 hours, and the minimum 30mm for 5 hours. The maximum rainfall per hour was 23mm/hr and the minimum 11.4mm/hr. The major findings were as follows; 1. All pervious pavement applied reduced over 75% of the surface runoff compared with concrete pavement. The grassy and porous pavements were relatively efficient in reducing surface runoff. 2. The grass was the more efficient as intercepting average 69.5mm of initial surface runoff, and maximum 77.8mm at the condition of 13.5mm/hr rainfall. The next was gravel intercepting maximum 65.5mm at the condition of 13.5mm/hr and the 40.9mm at 19.1mm/hr, average 55.7mm. 3. The modular pavements common in urban area were not good in intercepting the runoff except the 'clay granular brick' compared with others. The 'clay granular brick' showed relatively efficient intercepting average 14.1mm, which was the bigger amount than the 'grass+hole brick'. 4. The 'naked soil' were more effective than the 'concrete', 'brick', and 'interlocking block' in reducing the surface runoff, but less efficient than other materials. The capacity of the 'naked soil' to intercept the initial rainfall was similar to the 'brick'. As summary, the more grassy and porous pavement shows more effective in reducing surface runoffs.

Psychological Character Analysis of Pavement Materials (포장재료의 심리적 특성 분석)

  • Kim Dae-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.5
    • /
    • pp.43-51
    • /
    • 2004
  • Recently, the importance of choosing correct pavement materials has been increasing in urban spaces and streets. Much research regarding the pavement theory and construction method have been conducted, but analysis in terms of human psychological character has not yet been performed. The purpose of this study is to investigate the psychological characters to 12 pavement materials, that are commonly used in our urban spaces and streets. The results of the psychological character for each pavement material can be summarized as follows: 1. The psychological characters to each pavement material were as follows: ① Clay embodies a natural, traditional, soft and intimate psychological character; ② Pebble stone has a natural, hard, cool and intimate psychological character; ③ Turf grass incorporates an intimate and soft psychological character; ④ Ceramic brick has an artificial and hard psychological character; ⑤ Tile pavement has a modern, artificial, hard and cool psychological character; ⑥ Water permeable concrete has a modern and artificial psychological character; ⑦ Flag stone has a natural psychological character; ⑧ Granite has a modern and artificial psychological character; ⑨ Portland concrete has an artificial and hard psychological character; ⑩ Small compacted brick has an artificial, dynamic and modern psychological character; ⑪ Wood block pavement has a natural and traditional psychological character; ⑫ Asphalt concrete pavement has a modern, hard and artificial character. 2. On the results of the cluster analysis regarding psychological indexes for 12 pavement materials, pavement materials were categorized in 3 clusters. Among them, one cluster was mainly used as the most popular pavement material in our urban spaces and streets. From this point of view, psychological character for pavement material in our urban spaces and streets was not as various as we expected. 3. In conclusion, the proper selection of pavement materials was very important and the factors affecting the human psychological character should be considered in the design of urban spaces and streets.

Defect Analysis According to the Types and Spatial Type of Block Pavement in Apartment Complex (아파트 단지 내 블록포장의 종류와 공간유형에 따른 하자분석)

  • Park, Geun-Hye;Jung, Sung-Gwan;Jang, Cheol-Kyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.3
    • /
    • pp.91-104
    • /
    • 2020
  • This study was conducted to analyze the characteristics of defects according to the type of block and spatial type by quantitatively examining defects occurring in block pavement in apartment complex. According to the research results, depending on the type of block, defects have occurred 1,394.3ea/100㎡ in interlocking paver blocks, 464.8ea/100㎡ in clay brick paver blocks, and 235.1ea/100㎡ in shot blasted paver blocks. By space type, the defects were occurred 1,576.0ea/100㎡ on the access road paved by interlocking paver blocks and the defects were found 1,139.6ea/100㎡ in interlocking paver blocks, 235.1ea/100㎡ in shot blasted paver blocks, and 797.1ea/100㎡ in clay brick paver blocks, on the sidewalk. Also the defects are occurred 455.6ea/100㎡ on the resting space and 403.2ea/100㎡ on the gym space paved by clay brick paver blocks. Through the size analysis of the defects in the block paver, in the case 'peeling', the largest volume of 2,539.0㎣ on the sidewalk paved with shot blasted paver blocks, and 'Subsidence' occurred at the widest area of 2,096.0㎠ on the sidewalk where interlocking paver block was constructed. The difference in defect occurrence according to the type of block is considered to be influenced by the block production process, and the space type is considered to be caused the difference in the occurrence of defects according to the cause of construction and the usage pattern of residents. This study conducted a survey on defects in block and analyzed the defect characteristic according to paver material and space type. Base on this, it is judged that it can be used as an efficient basic data for material replacement, improvement, paver planning and construction in the future.

Use of Recycled Brick Masonry Aggregate and Recycled Brick Masonry Aggregate Concrete in Sustainable Construction

  • Schwerin, Dallas E.;Cavalline, Tara L.;Weggel, David C.
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.1
    • /
    • pp.28-34
    • /
    • 2013
  • Use of recycled aggregates in portland cement concrete (PCC) construction can offer benefits associated with both economy and sustainability. Testing performed to date indicates that recycled brick masonry aggregate (RBMA) can be used as a 100% replacement for conventional coarse aggregate in concrete that exhibits acceptable mechanical properties for use in structural and pavement elements, including satisfactory performance in some durability tests. Recycled brick masonry aggregate concrete (RBMAC) is currently not used in any type of construction in the United States. However, use of RBMAC could become a viable construction strategy as sustainable building practices become the norm. This paper explores the feasibility of use of RBMAC in several types of sustainable construction initiatives, based upon the findings of previous work with RBMAC that incorporates RBMA produced from construction and demolition waste from a case study site. A summary of material properties of RBMAC that will be useful to construction professionals are presented, along with a discussion of advantages and impediments to use. Several quality assurance and quality control techniques that could be incorporated into specifications are identified.

Use of Recycled Brick Masonry Aggregate (RBMA) and Recycled Brick Masonry Aggregate Concrete (RBMAC) in Sustainable Construction

  • Tara L. Cavalline;David C. Weggel;Dallas E. Schwerin
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.390-390
    • /
    • 2013
  • Use of recycled aggregates in portland cement concrete construction can offer benefits associated with both economy and sustainability. Testing performed to date indicates that RBMA can be used as a 100% replacement for conventional coarse aggregate in concrete that exhibits acceptable mechanical properties for use in structural and pavement elements, including satisfactory performance in some durability tests. RBMAC is currently not used in any type of construction in the United States. However, use of RBMAC could become a viable construction strategy as sustainable building practices become the norm. Rating systems such as LEED offer points for reuse of building materials (particularly on-site) and use of recycled materials. If renovations at an existing facility call for the demolition of existing brick masonry constructions, the rubble could be included as RBMA in new concrete pavement, sidewalks, or curb and gutter. Other potential uses for RBMAC could include those in the precast concrete industry, particularly in architectural precast concrete applications. In addition to providing acceptable strength and economy, the color of RBMA could be an attractive component of architectural precast concrete panels or other façade components. This paper explores the feasibility of use of RBMAC in several types of sustainable construction initiatives, based upon the findings of previous work with RBMAC produced from construction and demolition waste from a case study site. Guidance for obtaining and using RBMA is presented, along with a summary of material properties of RBMAC that will be useful to construction professionals.

  • PDF

Brick Path Recognition Using Image Shape Pattern and Texture Feature (영상의 형태 패턴과 텍스처 특징을 이용한 보도블록의 인식방법)

  • Woo, Byung-Seok;Yang, Sung-Min;Jo, Kang-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.472-484
    • /
    • 2012
  • Raised or plain block is widely used for the pedestrian's safe passage. The insincere construction, insufficient maintenance and obstacle overlaid on the pavement cause pedestrian's accidents. This paper proposes a method to detect brick path by analyzing the shape pattern and texture feature of brick located in visible distance for a safe passage. A brick appears to a regular type because of its specific shape which repeats with its sized gap and its type varies according to the surrounding environment or use. This paper shows a method which extracts the shape pattern by analyzing single surface polygon and its frequency appearing in road area. The shape pattern is used to detect similar shape regions. Some regions are not detected because extraneous substances or chopped bricks distort the original shape. This problem can be solved by analyzing the texture feature vector. The analyzed vector of the previously detected regions yields the Gaussian distribution. This value in each undetected region is computed and checked whether it's satisfied with Gaussian distribution or not. The satisfied region is detected as the brick path. The experiment was performed with the various type's bricks to recognize so that the results showed as accurate as 95.9% in average.

Thermal Environment Characteristics of Permeable Cement Concrete Pavement( I ) ($\cdot$보수성 시멘트 콘크리트 포장의 열환경 특성( I ))

  • Ryu Nam-Hyong;Yoo Byung-Rim
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.6 s.107
    • /
    • pp.82-94
    • /
    • 2005
  • This study was undertaken to measure and analyze the thermal environment characteristics of the grey permeable cement concrete pavement(GPCCP), the permeable cement concrete brick pavement(PCCBP) compared with impermeable cement concrete pavement(ICCP) and bare soil(BS) under the summer outdoor environment. Following is a summary of major results. 1) The peak surface temperature was greatest in the GPCCP$(54.2^{\circ}C)$ followed by ICCP$(47.2^{\circ}C)$ rut August 2, 2002, the hottest day$(35.3^{\circ}C\;of\;highest\;temperature)$ during the experiment; peak temperature in the ICCP and BS were $45.5^{\circ}C)$ and $45.3^{\circ}C)$ respectively. 2) Analysis of heat budget of the pavements has revealed that the heat environment was worse in the GPCCP than that in the ICCP and that this was mainly due to a low albedo in the former(0.2) relative to that of the latter(0.4). 3) Analysis of heat budget of the pavements has revealed that the heat environment was worse in the GPCCP than that in the PCCBP, BS and that this was mainly due to a decreased latent heat resulting from a time dependent decreasing impact of rainfall. 4) It is necessary to make cool pavements to further studies on light-colored surface materials for attaining high albdo and construction methods which can enhance the latent heat through the continuous evaporation from pavements surface. 5) Vertical arrangement of pavement layers has not been considered in the present study, which has been focuses on the heat characteristics of the surface layer materials. Accordingly, future studies will have to be empasized on pavement methods including the vertical arrangement of the pavement layers.

The Influence of Landscape Pavements on the WBGT of Outdoor Spaces without Ventilation or Shade at Summer Midday (조경포장이 옥외공간의 온열쾌적성지수(WBGT)에 미치는 영향 - 통풍과 차광이 배제된 하절기 주간의 조건에서 -)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • The purpose of the study was to evaluate the influence of landscaping pavements on WBGT(Wet-Bulb Globe Temperature) of outdoor spaces that lack ventilation and shade at summer midday. The relative humidity(RH), dry-bulb temperature(DT) and globe temperature(GT) were recorded every minute from June to October 2009 at a height of 1.2m above ten experimental beds with different pavements, by a measuring system consisting of an electric humidity sensor(GHM-15), resistance temperature detector(RTD, Pt-100), standard black globe(${\phi} 150mm$) and data acquisition systems(National Instrument's Labview and Compact FieldPoint). Additionally, the surface dry-bulb temperatures also were recorded and compared. The area of each experimental bed was 1.5m(W)${\times}$2.0m(L) and ten different kinds of pavement were used including grass, grass+cubic stone, grass+porous brick, brick, stone panels, cubic stone, interlocking blocks, clay brick, naked soil, gravel and concrete. To prevent interference from ventilation, a 1.5m height cubic steel frame was established around each bed and each vertical side of the frame was covered with transparent polyethylene film. Based on the records of the hottest period from noon to 3 PM on 26 days with a peak dry-bulb temperature over $30^{\circ}C$ at natural condition, the wet-bulb temperature(WT) and WBGT were calculated and compared. The major findings were as follows: 1. The average surface DT was $40.1^{\circ}C$, which is $9^{\circ}C$ higher than that of the natural condition. The surface DT of the pavements with grass were higher than those of concrete and interlocking block. The peak DT of the surface almost every pavement rose to above $50^{\circ}C$ during the hottest time. 2. The averages of DT, WT and GT were $40.1^{\circ}C$, $27.5^{\circ}C$ and $49.1^{\circ}C$, and the peak values rose to $48.1^{\circ}C$, $45.8^{\circ}C$ and $59.5^{\circ}C$, respectively. In spite of slight differences that resulted according to pavements, no coherent differentiating factor could be found. 3. The average WBGT of grass was the highest at $34.3^{\circ}C$ while the others were similar in the range of around $33{\pm}1^{\circ}C$. Meanwhile, the peak WBGT was highest with stone panel at $47.9^{\circ}C$. Though there were some differences according to pavements, and while grass seemed to be worst in terms of WBGT, it seems difficult to say ablolutely that grass was the worst because the measurement was conducted without ventilation and shade during summer daytime hours only, which had temperatures that rose to a dangerous degree(above $45^{\circ}C$ WBGT), withering the grass during the hottest period. The average WBGT resulted also showed that the thermal environment of the pavement without ventilation and shade were at an intolerable level for humans regardless of the pavement type. In summary, the results of this study show that ventilation and shade are more important factor than pavement type in terms of outdoor thermal comfort in summer daylight hours.