• Title/Summary/Keyword: Brest dose

Search Result 4, Processing Time 0.026 seconds

Effects of Breast Dose on Plain Abdominal Position (복부 방사선검사 자세가 유방선량에 미치는 영향)

  • Joo, Young-Cheol;Kim, Sheung-Hyuk
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.155-159
    • /
    • 2020
  • The purpose of this study is to investigate the effect of posture changes(Anteroposterior projection, Posteroanterior projection) in the plain abdominal examination on breast dose and to examine its clinical usefulness. This study was used a human body phantom and a glass dosimeter. Glass dosimeters were directly inserted from the center and outside of medial and lateral. In this study, the deep dose was measured in the right breast and the surface dose in the left breast. During the abdominal examination, the central X-ray incident point was perpendicularly incident to the image receptor 5 cm above the iliac crest. The exposure parameters were 82 kVp, 320 mA, 50 ms, x-ray field size 14×17 inch The distance between the center X-ray and the detector was fixed at 110 cm, and only the top two AEC chambers were used. As a result of this study, the medial and lateral side doses of the right breast were 535.73±30.68 μGy and 414.46±33.52 μGy for erect AP, and 145.80±18.52 μGy and 148.76±12.92 μGy in erect PA. The superficial breast dose was 754.00±68.36 μGy on the medial side and 674.06±45.58 μGy on the lateral side in the erect AP, 70.66±7.98 μGy on the medial side, and 86.46±15.35 μGy on the lateral side in the erect PA. There was a statistically significant difference in the difference between the mean values of the medial and lateral side doses in the deep and superficial areas of the breast according to the postural change (p <0.01). As a result of this study, If the abdominal radiography was examined in the PA position, the dose reduction effect was 72.78% on the medial side, 64.10% on the lateral side of the deep breast, 90.62% on the medial side, and 87.17% on the lateral side of the superficial breast compared to the AP position.

Suggestion of The Manual Exposure Condition Guideline for Reducing Patient Dose in Digital Breast Tomosynthesis (디지털 유방단층촬영의 피폭선량 경감을 위한 수동 촬영조건의 가이드라인 제시)

  • Hong, Eun-Ae;Lee, In-Ja
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.483-491
    • /
    • 2016
  • The conditions after exposure to digital mammography and digital breast tomosynthesis were analyzed. The examinations for the ACR phantom were done using manual exposure, not auto exposure, to examine image discrimination and patient dose. As a result, the following results were derived: In the CC exposure, the kVp was 2kVp higher while mAs decreased to 58.6% for the 3D tomography. Such result showed an approximate decrease of 60mAs. At that time, the patients' Average Glandular Dose (AGD) was 1.65mGy in 2D and 1.87mGy in 3D; thus, AGD of 3D was shown to have about 1.13times higher. The result of the manual exposure revealed a reduced mAs of up to 80%; there was no effect in the assessment standard in terms of image discrimination, resulting in more than 10 points. When mAs was reduced to 80% in the manual exposure for ACR phantom, AGD was decreased to 0.66mGy. The diagnostic values of images were maintained and patients dose was reduced in the manual exposure in the AEC condition for 3D. Since the use of 3D has recently increased, using the manual exposure has been recommended in this study to improve the diagnostic value, while, simultaneously reducing patients dose.

Patient Dose in Mammography (유방촬영에서 환자 피폭선량)

  • Shin, Gwi-Soon;Kim, You-Hyun;Kim, Jung-Min;Kim, Chang-Kyun;Yang, Jeong-Hwa;Choi, Jong-Hak
    • Journal of radiological science and technology
    • /
    • v.28 no.4
    • /
    • pp.293-299
    • /
    • 2005
  • In the present investigation, we analyzed the data of 1,318 patients (2,636 images) who underwent mammographic examinations and obtained the distribution of the patient age and compressed breast thickness. We measured also average glandular doses (AGD) as function of compressed breast thickness. In order to obtain the values of AGD, we measured half value layer (HVL) and tube output (mR/mAs) for each kVp and target/filter combination. Entrance surface air kerma (ESAK) was calculated from the tube output as measured for each voltage used under clinical conditions and from the tube loading (mAs). AGD per exposure were calculated by multiplying the ESAK values by the conversion factors tabulated by Dance. We obtained in this study the following conclusions. The mean value of compressed breast thickness for cranio-caudal (CC) view was 35.8mm and that for medio-lateral oblique (MLO) view was 43.3 mm. The mean value of AGD for CC view was 1.55 mGy and that for MLO view was 1.70 mGy. The AGD for MLO view was 0.15 mGy (10%) higher than that for CC view because the thickness for MLO view was on average 4.8 mm higher than that for CC view. The values of AGD increased with increasing compressed brest thickness. The increased AGD value was on average 0.34 mGy per 10 mm in the thickness ranges $10{\sim}80\;mm$, therefore differences between the AGD values of each thickness were relative large. Thus, it is considered to need limited doses for mammography with the upper end of exposure range at several different compressed brest thickness.

  • PDF

Comparison of Average Glandular Dose in Screen-Film and Digital Mammography Using Breast Tissue-Equivalent Phantom (유방조직등가 팬텀을 이용한 Screen-Film과 Digital Mammography에서의 평균 유선선량)

  • Shin, Gwi-Soon;Kim, Jung-Min;Kim, You-Hyun;Choi, Jong-Hak;Kim, Chang-Kyun
    • Journal of radiological science and technology
    • /
    • v.30 no.1
    • /
    • pp.13-23
    • /
    • 2007
  • In recent years, mammography system is changed rapidly from conventional screen-film system to digital system for application to screening and diagnosis. Digital mammography system provides several advantages over screen-film mammography system. According to the information provided by the manufacturer, digital mammography system offers radiation dose reduction in comparison with screen-film mammography system, because of digital detector, particularly direct digital detector has higher x-ray absorption efficiency than screen-film combination or imaging plate(IP). We measured average glandular doses(AGD) in screen-film mammography(SFM) system with slow screen-film combination, computed mammography(CM) system, indirect digital mammography(IDM) system and direct digital mammography(DDM) system using brest tissue-equivalent phantom(glandularity 30%, 50% and 70%). The results were shown as follows : AGD values for DDM system were highest than those for other systems. Although automatic exposure control(AEC) mode was selected, the curve of the AGD values against thickness or glandularity increased significantly for the SFM system with the uniform target/filter(Mo/Mo) combination. Therefore, the AGD values for the high energy examinations were highest in the SFM system, and those for the low energy examinations were highest in the DDM system. But the curve of the AGD values against thickness and glandularity increased gently for CM system with the automatic selection of the target/filter combination (from Mo/Mo to Mo/Rh or from Mo/Rh to Rh/Rh), and the AGD values were lowest. Consequently, the parameters in mammography for each exposure besides detection efficiency play an important role in oder to estimate a patient radiation dose.

  • PDF