• 제목/요약/키워드: Breakup Process

검색결과 97건 처리시간 0.029초

액체 연료 탱크 내 슬로싱 현상에서의 액적 형성 분석 (Analysis of droplet formation under sloshing phenomena in liquid fuel tank)

  • 박성우;황진율
    • 한국가시화정보학회지
    • /
    • 제21권2호
    • /
    • pp.102-110
    • /
    • 2023
  • With the global shift from a carbon-based economy to a hydrogen-based economy, understanding the sloshing phenomenon and its impact on boil-off rate (BOR) in liquid hydrogen (LH2) tank trailers is crucial. Here, we analyze the primary breakup process under sloshing phenomena in a liquid fuel tank. We observe the growth of multiple holes on the sheet-like structures and the formation of ligament structures reminiscent of jet atomization. Through the extraction of three-dimensional liquid regions, we analyze the geometrical characteristics of these regions, enabling the classification of sheets, ligaments, and droplets. The present findings could contribute to understanding the breakup mechanism and hold potential for the development of strategies aimed at minimizing BOR.

분위기 조건이 직접 분사식 가솔린 분무의 발달 과정 및 미립화 특성에 미치는 영향 (Effect of ambient conditions on the spray development and atomization characteristics of a gasoline spray injected through a direct injection system)

  • 하성용
    • 한국분무공학회지
    • /
    • 제10권4호
    • /
    • pp.47-53
    • /
    • 2005
  • This paper presents the effects of ambient pressure on atomization characteristics of high-Pressure injector in a direct injection gasoline engine both experimentally and numerically. The atomization characteristics such as mean droplet size, mean velocity, and velocity distribution were measured by phase Doppler particle analyzer. The spray development, spray penetration, and global spray structure were visualized using a shadowgraph technique. In order to investigate the atomization process numerically, the LISA-DDB hybrid model was utilized. This breakup model assumes that the primary breakup occurs when the amplitude of the unstable waves is equal to the radius of the ligament of liquid sheet near the nozzle and the droplet deformation induces the secondary breakup. The results provide the effect of ambient pressure on the macroscopic and microscopic behaviors such as spray development, spray penetration, mean droplet size, and mean velocity distribution. It is also revealed that the accuracy of prediction of LISA-DDB hybrid model is pretty good in terms of spray developing process, spray tip penetration, and SMD distribution.

  • PDF

平滑流의 分裂길이에 미치는 同軸氣流의 영향 (The influence of co-axial air flow on the breakup length of a smooth liquid jet)

  • 김덕줄;이충원
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1390-1398
    • /
    • 1988
  • 본 연구에서는 액주가 가장 긴 평활류 조건하에서 여기에 동축수직하방으로 공기를 흘렸을 경우, 액주분열에 영향을 미친다고 생각되는 제 인자 즉, 액체유속, 공 기유속, 액체노즐과 공기 오리피스 직경의 비, 노즐의 형상, 기액 접촉개시 위치등을 변화시켜 분열과정 및 분열기구를 규명하고, 이류체 분사노즐의 설계기준을 제공하는 것을 그 목적으로 한다.

초임계상태 분무의 분무 특성에 관한 연구 (The Study on the Spray Characteristics of Supercritical Spray)

  • 박찬준
    • 한국분무공학회지
    • /
    • 제4권3호
    • /
    • pp.8-14
    • /
    • 1999
  • The characteristics of the breakup process in supercritical spray is investigated during the injection of supercritical sulfur hexafluoride into dissimilar gases at supercritical pressures and subcritical temperature of the injected fluid. The visualization techniques used are backlighting and shadowgraph methods. The spray angles are measured and the breakup and mixing process are observed at near and supercritical conditions. The results show that spray angles are decreased with the in..ease of the ratio of density $(\frac{\rho_f}{\rho_g})$. At the supercritical temperature, the spray angles in atomization region are kept nearly constant such as the typical spray angle in gas injection. The mixing process is changed radically at the temperature where $\frac{d\rho}{dT}=\frac{1}{2}[\frac{d\rho}{dT}]_{max}$ at given pressure.

  • PDF

희박연료 직접분사(Lean Direct Injection) 가스터빈 연소기의 이상유동 분석 (The Analysis of Two-phase Flow in a Lean Direct Injection Gas-turbine Combustor)

  • 이교빈;김종찬;성홍계
    • 한국항공우주학회지
    • /
    • 제47권3호
    • /
    • pp.204-211
    • /
    • 2019
  • 희박연료 직접분사(Lean Direct injection(LDI)) 가스터빈 연소기에 대한 이상유동 특성을 해석하였다. LDI 연소기에 적용된 환형분사기(hollow-cone spray injector)의 분열을 모사하기 위해 분열모델(Linearized Instability Sheet Atomization(LISA), Aerodynamically Progressed Taylor Analysis Breakup(APTAB)을 적용하였다. 침투깊이와 평균입도(Sauter Mean Diameter(SMD))를 통해 분열모델을 검증하였으며, LDI 연소기에 적용하여 이상유동특성을 분석하였다. 스월인젝터로 인해 Precessing Vortex Core(PVC)가 발생하였으며, 액적들이 PVC를 따라 미립화되는 것을 확인하였다. SMD 결과를 통해 PVC가 회전하는 영역의 외곽으로 즉, 빠른 속도 영역에 액적들이 분포하며, 스톡스수(Stokes number)는 1보다 작다.

분위기 조건에 따른 GDI 엔진용 인젝터의 분무거동 및 증발특성에 대한 수치적 해석 (Numerical Analysis of Spray Behavior and Vaporization Characteristic of GDI Engine Injector Under Ambient Conditions)

  • 심영삼;황순철;김덕줄
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.545-552
    • /
    • 2004
  • The purpose of this study is to improve the prediction ability of the atomization and vaporization processes of GDI spray. Several models have been introduced and compared. The atomization process was modeled using hybrid breakup model that is composed of Linearized Instability Sheet Atomization (LISA) model and Aerodynamically Progressed TAB (APTAB) model. The vaporization process was modeled using Spalding model and Abramzon & Sirignano model. Exciplex fluorescence method was used for comparing calculated with experimental results. The experiment and computation were performed at the ambient pressure of 0.1 MPa, 0.5 MPa and 1.0 MPa and the ambient temperature of 293k and 473k. Comparison of calculated and experimental spray characteristics was carried out and the calculated results of GDI spray showed good agreement with experimental results.

점탄성 유체에 따른 충돌분무의 분무패턴 및 미립화 특성 (Spray Patterns and Atomization Characteristics of Viscoelastic Fluid with Impinging Jet)

  • 이문희;홍정구
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.145-151
    • /
    • 2019
  • Viscoelastic fluid is used in various industrial sites because its cost reduction and environmental benefits by preventing formation of fine droplets that scattered around. However, viscoelastic fluids, unlike newtonian fluids, contain a shear thinning characteristic that decrease in viscosity as shear rate increases and elastic characteristic, making it difficult to predict spray breakup process. In this study we made three test fluids. Boger fluid with viscoelastic characteristics, and two newtonian fluids, were prepared to exclude shear thinning characteristics and study the effects of elastic characteristic only. Flow visualization, spray angle, and SMD were measured for three test fluids using laboratory scale impinging jet test apparatus. As a result, it was confirmed that Boger fluid, unlike the newtonian fluid, was not formed fine droplets that scattered around and the breakup process appeared differently. In addition, SMD was found to be large in Boger fluid, and the SMD according to pressure was confirmed that there is no significant difference.

벽면 충돌 분사에 의한 DI디젤엔진 배기가스 특성의 수치해석적 연구 (A Numerical Study on the emission Characteristics of DI Diesel Engine by Wall Impingement of Spray)

  • 최성훈;황상순
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.97-105
    • /
    • 1998
  • High pressure injection is recently used to reduce the emissions and increase the power of DI diesel engine. This high pressure injection makes the spray strike the cylinder wall. This spray/wall impingement is known to affect the emission and performance of DI diesel engine such that it is very important to know the spray/wall impingement process. In this study, multidimensional computer program KIVA-II was used to clarify the effect of spray wall impingement by different injection spray angle with the spray/wall impingement model consiedering rebound and slide motion and also the improved submodel for liquid breakup, drop distortion model.

  • PDF

고전압 직류전기장에서 전기수력학적 분무 유동 가시화에 관한 연구 (A Study on the Visualization of Electrohydrodynamic Spray Flow in High DC Voltages)

  • 성기안
    • 한국분무공학회지
    • /
    • 제11권3호
    • /
    • pp.131-139
    • /
    • 2006
  • An experimental study was performed to investigate the liquid breakup and atomization characteristics in electrohydrodynamic atomization according to the changing of experimental parameters such as nozzle size, fluid flow, and electrical intensity. An original electrohydrodynamic atomizer equipment was designed and manufactured for the analysis of spray visualization and the exploration of relationship between applied power and the behavior of liquid atomization. The image processing technique by using the back-illumination method was applied to visualize the distilled liquid breakup process and to examine the variation of the droplet size distribution. The results show that the spray modes of electrohydrodynamic atomization are closelyconnected by the strength of the electric stresses at the surface of the liquid film and the kinetic energy of the liquid jet leaving the needle tip.

  • PDF

EGR을 사용하는 직접분사식 디젤엔진의 연소과정 및 매연가스 배출특성에 대한 수치해석 (Numerical studies for combustion processes and emissions in the DI diesel engines using EGR)

  • 권영동;이재철;김용모;김세원
    • 대한기계학회논문집B
    • /
    • 제21권5호
    • /
    • pp.659-669
    • /
    • 1997
  • The effects of exhaust gas recirculation on diesel engine combustion and soot/NOx emissions are numerically studied. The primary and secondary atomization is modelled using the wave instability breakup model. Autoignition of a diesel spray is modelled using the Shell ignition model. Soot formation is kinetically controlled and soot oxidation is represented by a model which account for surface chemistry. The NOx formation is based on the extended Zeldovich NOx model. Effects of injection timing and concentration of $O_{2}$ and CO$_{2}$ on the pollutant formation and the combustion process are discussed in detail.