• Title/Summary/Keyword: Breakup Length

Search Result 87, Processing Time 0.019 seconds

Breakup Characteristics in Plain Jet Air Blast Atomizer(I)-Jet Breakup and Internal Flow- (2유체 분무노즐의 분열특성(I)-액주분열 및 내부유동-)

  • Kim, Hyeok-Ju;Lee, Chung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1009-1023
    • /
    • 1997
  • The breakup length of a liquid jet with flowrate, formed by releasing through a nozzle of circular cross-section into the atmosphere, was experimented and studied for 3 liquid nozzles of varying diameters. The experimental result was analyzed using the existing theoretical equation for predicting the breakup length. It was found that the breakup length of liquid jet depends on the velocity, and the breakup length increases with increasing of the liquid nozzle diameter. Also, the variation range of the breakup length for the same flowrate of liquid increased rapidly as velocity was increased for laminar flow, but in the turbulent flow region, it leveled off in the range of approximately 0.55-0.7 of the mean breakup length. Furthermore, when the longest smooth liquid jet was applied to the co-axial flow air blast atomizer, the effect of air flow on the flow pattern and breakup length was studied for 6 glass nozzles of different lengths and diameters. It was found that depending on the diameter of the mixing tube and liquid jet, it was possible to observe a wide range of flow patterns, such as liquid jet through flow, partial annular flow and annular flow. The liquid jet breakup length was more sensitive to the change in the length rather than the diameter of the mixing tube. As the length of the mixing tube shortens, the breakup length also shortens rapidly.

Evaluation of jet breakup length with a CFD code under steam generation condition in a pre-flooded cavity

  • Jeong-Hyeon Eom;Gi-Young Tak;In-Sik Ra;Huu Tiep Nguyen;Hae-Yong Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2498-2503
    • /
    • 2023
  • When the reactor vessel is penetrated in a severe accident of light water reactor, the molten fuel-coolant interaction including the jet breakup occurs and the jet breakup length becomes one of the important parameters. Most numerical studies on jet breakup process have been carried out using dedicated computer codes. Some researchers are trying to apply commercial CFD codes to their investigations on comprehensive jet breakup process. However, the complexity of the phenomena limits the CFD application only to hydrodynamic aspects. In the present study, numerical analysis of jet breakup under vapor generation is pursued using the STAR-CCM + code. The obtained CFD prediction of the MATE09 experiment shows jet breakup progression patterns consistent to the images taken in the experiment. Further, the predicted positions of leading head, which determine the jet breakup length, are in good agreement with the MATE 09 data. The investigation of hydrodynamic effects on the jet breakup with higher jet velocity results in a stronger shear force and earlier jet breakup process even though there exists the vapor pocket around the corium jet. In future studies, the effect of vapor intensity on the jet breakup length would be investigated further by changing other parameters.

Study on Atomization Characteristics of Shear Coaxial Injectors (전단동축형 분사기들의 미립화 특성에 대한 연구)

  • Ahn, Jonghyeon;Lee, Keunseok;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Six shear coaxial injectors with different recess length and taper angle were manufactured. Cold-flow tests on the injectors were performed at room temperature and pressure using water and air as simulants. By changing the water mass flow rate and air mass flow rate, spray images were taken under single-injection and bi-injection. Breakup length and spray angle were analyzed from instantaneous and averaged spray images using image processing techniques. For all the injectors, the breakup length generally decreased as the momentum flux ratio increased at the same gas mass flow rate. The injectors with 7.5° taper angle usually had the longest breakup length and the smallest spray angle. When the taper angle was 15° or more, it hardly affected breakup length and spray angle. The recess length did not influence breakup length but its effect on spray angle depended on the taper angle.

Breakup Characteristics of Liquid Sheets Formed by Impinging Jets in High Pressure Environments (고압분위기에서 충돌제트로 형성되는 액막의 분열특성)

  • Jung, Ki-Hoon;Khil, Tea-Ock;Lim, Byoung-Jik;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • Breakup characteristics of liquid sheets formed by the impingement of two water jets, such as a breakup length and a breakup wavelength of sheet, were investigated as increasing the injection velocity up to 30m/s and the ambient gas pressure up to 4.0MPa. While round edged orifices formed a laminar sheet which has no waves on the sheet when the injection velocity is low, sharp edged orifices formed a turbulent sheet which has impact waves irrespective of the injection velocity. Thus we compared the differences of breakup characteristics between them. The results showed that the aerodynamic force significantly affects the breakup of laminar sheet when the gas based Weber number is higher than unity, It was also found that the turbulent sheets have three breakup regimes, i.e. expansion regime, wave breakup regime and catastrophic breakup regime according to the gas based Weber number.

  • PDF

The Effects of Orifice Internal Flow on the Breakup Characteristics of Liquid Sheets Formed by Like-Doublet Injectors (오리피스 내부유동에 따른 like-doublet 인젝터의 분열 특성)

  • Jung, K.H.;Khil, T.O.;Yoon, Y.B.
    • Journal of ILASS-Korea
    • /
    • v.7 no.4
    • /
    • pp.32-41
    • /
    • 2002
  • The breakup characteristics of liquid sheets formed by like-doublet injector were investigated in the cold-flow and atmospheric ambient pressure condition. The sheet breakup wavelength, which induces the sheet to be broken into ligaments, as well as the sheet breakup length, which is important for the flame location, was measured using a stroboscopic light. The liquid ligaments are formed intermittently after the breakup of sheet, and the wavelength of ligaments has been believed to have a relation to the combustion instability of liquid rocket engine. Therefore, the wavelength of ligaments and the breakup length of ligaments into fine drops were also measured. Since these spray characteristics are affected by the flow characteristics of two liquid jets before they impinge on each other, we focused on the effects of orifice internal flow such as the cavitation phenomenon that occurs inside the sharp-edged orifice. From the experimental results, we found that the liquid jet turbulence delays the sheet breakup and makes shorter wavelengths for both sheets and ligaments. Since the turbulent strength of sharp-edged orifice is stronger than that of round-edged orifice, the shape of orifice entrance results in large differences in the spray characteristics. Using these results, we proposed empirical models on the spray characteristics of the like-doublet injector, and these models are believed to provide some useful and actual data for designing liquid rocket combustors.

  • PDF

Breakup Characteristics of Impinging and Swirl Type Injectors

  • Yoon, Y.B.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.32-46
    • /
    • 2005
  • The breakup characteristics of liquid sheets formed by the impinging and swirl type injectors were studied as increasing the Weber number (or injection condition) and the ambient gas pressure to 4.0.MPa. In the case of impinging type injector. we compared the changes of breakup lengths between laminar and turbulent sheets. which are formed by the impingement of laminar and turbulent jets. respectively. The results showed that both sheets expand as increasing the injection velocity irrespective of the ambient gas density when the gas based Weber number is low. When the Weber number is high, however, the breakup of turbulent sheet depends on the hydraulic force of jets as well as the aerodynamic force of ambient gas which determines the breakup of laminar sheet. Using the experimental results. we could suggest empirical models on the breakup lengths of laminar and turbulent sheets. In the case of swirl type injector. as $We_l$, and ambient gas density increased, the disturbances on the annular liquid sheet surface were amplified by the increase of the aerodynamic forces. and thus the liquid sheet disintegrated near from the injector exit. Finally, the measured breakup length of swirl type injector according to the ambient gas density and $We_l$, was compared with the result by the linear instability theory. We found that the corrected breakup length relation derived from linear instability theory considering the attenuation of sheet thickness agrees well with our experimental results.

  • PDF

BREAKUP LENGTH OF CONICAL EMULSION SHEET DISCHARGED BY PRESSURE-SWIRL ATOMIZER

  • Rhim, Jung-Hyun;No, Soo-Young
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.103-107
    • /
    • 2001
  • Many researches on pressure-swirl injectors due to the variety of application have been conducted on the effects of nozzle design, operating conditions, properties of liquid and ambient conditions on the flow and spray characteristics. The breakup length of conical emulsified fuel sheet resulting from pressure-swirl atomizer using in the oil burner was investigated with the digital image processing method with neat light oil and emulsion with water content of lotto% and the surfactant content of 1-3%. The injection pressure ranged from 0.1 to 1.2 MPa was selected. The various regimes for the stage of spray development within the experimental conditions selected in this study is newly suggested in terms of Ohnesorge number and injection pressure. The breakup length for both criteria show the same tendency even though the random nature of perforation and disintegration process of liquid sheet. The stage of spray development is widely different with the physical properties of liquid atomized, mainly viscosity of liquid. The breakup length decreases smoothly with increase in the injection pressure for the lower viscous liquid.

  • PDF

Disintegration of Cryogenic Jet in Super-critical Environment (초임계 환경으로 분사되는 극저온 제트의 분열)

  • Lee, Keonwoong;Kim, Dohun;Koo, Jaye
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.140-145
    • /
    • 2013
  • Sub/supercritical spray experiments were conducted, and cryogenic nitrogen and gaseous argon were selected for simulants. liquid nitrogen and gaseous argon were injected in subcritical case, and supercritical nitrogen and near-critical gaseous argon were injected in near-critical/supercritical cases. shadowgraph method was used to visualize spray, and analyzed about the breakup length. The breakup length was measured from numbers of Instantaneous shadowgraph Images from each case, and they were compared with momentum flux ratios and density ratios. It was observed that the relation between breakup length and momentum flux ratio was fitted into former experiment results. and the reasonable constant was suggested about the relation between breakup length and density ratio.

Effect of Condensation on Spray Characteristics of Simplex Swirl Nozzle (응축이 심플렉스 와류 노즐의 분무 특성에 미치는 영향)

  • Koh, Kwang-Uoong;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.107-112
    • /
    • 2001
  • The effect of ambient gas (steam) condensation on swirl spray characteristics were studied experimentally for low subcooling condition of the liquid. The configuration of the liquid(water) sheet and the breakup modes were examined. Also variation of the discharge coefficient, breakup length, local and the cross-sectional area-averaged SMD of droplets with the liquid flow(injection) rate were obtained. The perforation breakup mode appears dominant with condensation while the aerodynamic wave breakup mode is dominant without condensation(in the air environment). The discharge coefficient, breakup length and the mean drop sizes decrease in a same manner with increasing of the liquid flow rate for both cases(with and without condensation). The condensation effects are insignificant with the discharge coefficient. However, the local and cross-sectional area-averaged SMD are larger and the breakup length becomes shorter in the steam environment. The spray angle predicted from the volumetric flux distribution along the radial direction of the sprays in the steam environment becomes larger with condensation.

  • PDF

Measurement of Breakup Length of Viscous Liquid Jet in Stagnant Air (정지공기중 점성유체 분류의 분열길이 측정)

  • Rhim, Jung-Hyun;Ryu, Keun-Young;Lim, Sung-Bin;No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.1-7
    • /
    • 1998
  • The measurement of breakup length of viscous liquid jet in stagnant air was conducted by a 3CCD digital video camera. The nozzle diameters of 4, 6, 8mm with L/d=50 were selected and the dynamic viscosity of viscous liquid made of glycerine and water was in the range of $1.061\times10^{-6}m^2/s$ to $4.935\times10^{-5}m^2/s$. The critical velocity is decreased and the breakup length is increased with the increase of nozzle diameter at the same dynamic viscosity of liquid. At the same nozzle diameter, the breakup length and the critical velocity are both increased with the increase of dynamic viscosity of liquid. It is found in the theoretical analysis that the initial disturbance level is the main cause of occurrance of critical Reynolds number in the stability curve. The comparison of experimental critical Reynolds number and the empirical correlation by Tanasawa and Toyota reveals the relatively good agreement.

  • PDF