• Title/Summary/Keyword: Breakthrough Curves

Search Result 115, Processing Time 0.021 seconds

Study on Radionuclide Migration Modelling for a Single Fracture in Geologic Medium : Characteristics of Hydrodynamic Dispersion Diffusion Model and Channeling Dispersion Diffusion Model (단일균열 핵종이동모델에 관한 연구 -수리분산확산모델과 국부통로확산모델의 특성-)

  • Keum, D.K.;Cho, W.J.;Hahn, P.S.;Park, H.H.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.401-410
    • /
    • 1994
  • Validation study of two radionuclide migration models for single fracture developed in geologic medium the hydrodynamic dispersion diffusion model(HDDM) and the channeling dispersion diffusion model(CDDM), was studied by migration experiment of tracers through an artificial granite fracture on the labolatory scale. The tracers used were Uranine and Sodium lignosulfonate know as nonsorbing material. The flow rate ranged 0.4 to 1.5 cc/min. Related parameters for the models were estimated by optimization technique. Theoretical breakthrough curves with experimental data were compared. In the experiment, it was deduced that the surface sorption for both tracers did not play an important role while the diffusion of Uranine into the rock matrix turned out to be an important mass transfer mechanism. The parameter characterizing the rock matrix diffusion of each model agreed well The simulated result showed that the amount of flow rate could not tell the CDDM from the HDDM quantitatively. On the other hand, the variation of fracture length gave influence on the two models in a different degree. The dispersivity of breakthrough curve of the CDDM was more amplified than that of the CDDM when the fracture length was increased. A good agreement between the models and experimental data gave a confirmation that both models were very useful in predicting the migration system through a single fracture.

  • PDF

현장 Single Well Push-Pull 실험을 통한 탈질산화반응 각 단계의 반응속도 측정

  • Yeong, Kim;Jin Hun, Kim;Bong Ho, Son;Seong Uk, Eo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.77-82
    • /
    • 2004
  • Quantifying rates of microbial processes under subsurface conditions is difficult, and is most commonly approximated by laboratory studies using aquifer materials. In this study a single-well, 'push-pull' test method is adapted for the in situ determination of denitrification rates in groundwater aquifers. The rates of stepwise reduction of nitrate to nitrite, nitrous oxide, and molecular nitrogen were determined by performing a series of push-pull tests at an experimental well field of Korea University. A single Transport Test, one Biostimulation Test, and four Activity Tests were conducted for this study. Transport tests are conducted to evaluate the mobility of solutes used in subsequent tests. These included bromide (a conservative tracer), fumarate (a carbon and/or source), and nitrate (an electron acceptor). At this site, extraction phase breakthrough curves for all solutes were similar, indicating apparent conservative transport of the solutes prior to biostimulation. Biostimulation tests were conducted to stimulate the activity of indigenous heterotrophic denitrifyinc microorganisms. Biostimulation was detected by the simultaneous production of carbon dioxide and nitrite after each injection. Activity tests were conducted to quantify rates of nitrate, nitrite, and nitrous oxide reduction. Estimated zero-order degradation rates decreased in the order nitrate '||'&'||'gt; nitrite '||'&'||'gt; nitrous oxide. The series of push-pull tests developed and field tested in this study should prove useful for conducting rapid, low-cost feasibi1ity assessments for in situ denitrification in nitrate-contaminated aquifers.

  • PDF

A Study on the Romantic Costume Style - Focus on Women's Fashion before and after the 21th century - (로맨틱 복식(服飾) 양식(樣式) 연구(硏究)- 21세기(世紀) 전후(前後) 여성(女性) 패션을 중심(中心)으로 -)

  • Park, Shin-Young;Cho, Kyu-Hwa
    • Journal of Fashion Business
    • /
    • v.11 no.1
    • /
    • pp.48-60
    • /
    • 2007
  • The purpose of this study is to examine the romantic costume style which has become a big trend before and after the 21th century. For this purpose, I examined the development plans and characteristics of women's costume in France in the Romantic period from the 1820s to the 1850s and analyzed the aesthetic characteristics of romantic costume style The aesthetic characteristics of romantic style in the 19th century were defined by the feminine and elegant beauty, exoticism, and sensuality. Since the 1990s, the characteristics are classified into Feminine & Elegant Style, Ethnic & Fusion Style, and Sensual Style. Feminine & Elegant Style is characterized by delicate, splendid lace and frill decorations that have become more ornamental and technical since the 1990s. They create greater romance and express gentler and more elegant femininity away from the artificial silhouette. Ethnic & Fusion Style use more diverse ethnic patterns, colors, accessories, and details since the 1990s and shows more varieties and creativity in convergence with modern fashion. Sensual Style exposes the physical curve of female body. In the 19th century, cuffs and collars were exaggerated and shoulders were exposed for sensuality. After the 1990s, however, see-through materials have been used to show the beauty of natural physical curves or corsets have been worn as the outerwear. Studying romantic costume style, which arose as a concept of postmodernism, the cultural ideology that exists as a breakthrough of our time, is signified by the understanding of the latest cultural phenomenon and fashion trends.

Ion Exchange Behavior of $^{137}Cs,\;^{60}Co$ on Diphosil, a new ion exchange resin (Diphosil 이온교환수지에 의한 $^{137}Cs,\;^{60}Co$의 이온교환 거동)

  • Kim, Su-Jeong;Lee, Sang-Jin;Yang, Ho-Yeon;Shin, Sang-Woon
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Diphosil, a new version of the organic-inorganic composite resin developed by ANL has a structure of the chelating diphosphonic acid groups grafted to a silica support. To apply Diphosil for the treatment of liquid radioactive waste from nuclear power plants, the adsorption equilibrium and column experiments were carried out for the main radionuclides, $^{137}Cs\;and\;^{60}Co$, in the liquid radwaste stream. Through the adsorption equilibrium experiments, the removal efficiencies of $^{137}Cs\;and\;^{60}Co$, and the effects of non-radioactive ions on the removal efficiency have been measured in various conditions using radiotracers. The breakthrough curves for the tested tracers were obtained from the laboratory scale column tests using the simulated liquid radioactive waste. In addition, the removal capacity of Diphosil is compared with that of Amberlite IRN 77 resin, generally used in nuclear power plants.

Regeneration of Zinc Titanate Used for High Temperature Desulfurization of Fuel Gases (연료가스의 고온 탈황에 사용된 Zinc Titanate의 재생)

  • 이태진;권원태
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.73-80
    • /
    • 1998
  • Zinc titanate sorbents were prepared and regeneration of used sorbents for high temperature desulfurization of fuel gases was studied. Zn/Ti molar ratio of prepared sorbents was 1.5 and quartz fixed-bed reactors with 1 cm and 3 cm diameters were used. Regeneration of zinc titanate sorbents at high temperature is exothermic reaction; that brings about deterioration of sorbents. Therefore, we experimented regeneration reaction of zinc titanate sorbents for the purpose of obtaining the most suitable regeneration conditions by changing experimental parameters such as reaction temperature, oxygen concentration, flow rate and steam content. $H_2S$ and $SO_2$ breakthrough curves were obtained during desulfurization-regeneration. Also, properties of the sorbents before and after regeneration were analyzed using SEM, XRD, Hg-porosimetry and BET method. From such results, we obtained the most suitable regeneration conditions including regeneration temperature of 650$^{\circ}$C, $O_2$ content of 5% and steam content of 10% in the gas stream.

  • PDF

Single Well Push-Pull Test를 이용한 TCE 오염 지하수의 In-Situ Bioremediation 타당성조사

  • Kim, Yeong;Istok, Jonnathan;Semprini, Lewis
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.188-191
    • /
    • 2003
  • Sing]e-well-push-pull tests were developed for use in assessing the feasibility of in-situ aerobic cometabolism of chlorinated aliphatic hydrocarbons (CAHs). The series includes Transport tests, Biostimulation tests, and Activity tests. Transport tests are conducted to evaluate the mobility of solutes used in subsequent tests. These included bromide or chloride (conservative tracers), propane (growth substrate), ethylene, propylene (CAH surrogates), dissolved oxygen (electron acceptor) and nitrate (a minor nutrient). Tests were conducted at an experimental well field of Oregon State University. At this site, extraction phase breakthrough curves for all solutes were similar, indicating apparent conservative transport of the dissolved gases and nitrate prior to biostimulation. Biostimulation tests were conducted to stimulate propane-utilizing activity of indigenous microorganisms and consisted of sequential injections of site groundwater containing dissolved propane and oxygen. Biostimulation was detected by the increase in rates of propane and oxygen utilization after each injection. Activity tests were conducted to quantify rates of substrate utilization and to confirm that CAH-transforming activity had been stimulated. In particular, the transformation of injected CAH surrogates ethylene and propylene to the cometabolic byproducts ethylene oxide and propylene oxide provided evidence that activity of the monooxygenase enzyme system, responsible for aerobic cometabolic transformations of CAHs had been stimulated. Estimated zero-order transformation rates decreased in the order propane > ethylene > propylene. The series of push-pu3l tests developed and field tested in this study should prove useful for conducting rapid, low-cost feasibility assessments for in situ aerobic cometabolism of CAHs.

  • PDF

Bio-regeneration of Ion-exchange Resin for Treating Reverse Osmosis Concentrate (RO 농축폐액의 처리를 위한 이온교환수지의 생물재생)

  • Bae, Byung-Uk;Nam, Youn-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.517-523
    • /
    • 2014
  • In order to remove both nitrate and sulfate present in the concentrate of RO(reverse osmosis) process, a combined bio-regeneration and ion-exchange(IX) system was studied. For this purpose, both denitrifying bacteria(DNB) and sulfate reducing bacteria(SRB) were simultaneously cultivated in a bio-reactor under anaerobic conditions. When the IX column containing a nitrate-selective A520E resin was fully exhausted by nitrate and sulfate, the IX column was bio-regenerated by pumping the supernatant of the bio-reactor, which contains MLSS concentration of $125{\pm}25mg/L$, at the flowrate of 360 BV/hr. Even though the nitrate-selective A520E resin was used, the breakthrough curves of ionic species showed that sulfate was exhausted earlier than nitrate. The reason for this result is due to the fact that the concentration of sulfate in RO concentrate was 36 to 48 times higher than nitrate. The bio-reactor was successfully operated at a volumetric loading rate of 0.6 g $COD/l{\cdot}d$, nitrate-N loading rate of 0.13 g $NO_3{^-}-N/l{\cdot}d$, and sulfate loading rate of 0.08 g $SO_4{^{2-}}/l{\cdot}d$. The removal rate of SCOD, nitrate-N, sulfate was 90, 100, and 85%, respectively. When the virgin resin was fully exhausted and consecutively bio-regenerated for 2 days, 81% of nitrate and 93% of sulfate were reduced. When the virgin resin was repeatedly used up to 4 cycles of service and bio-regeneration, the ion-exchange capacity of bio-regenerated resin decreased to 95, 91, 88, and 81% of virgin resin.

Removal Efficiency of Organic Iodide on Silver Ion-Exchanged Zeolite and TEDA-AC at High Temperature Process (고온공정에서 은교환 제올라이트 및 TEDA 첨착활성탄의 유기요오드 제거성능)

  • 최병선;박근일;윤주현;김성훈;배윤영;지성균;양호연;유승곤
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.207-214
    • /
    • 2003
  • Removal efficiency of methyl iodide at high temperature process by TEDA-impregnated activated carbon used for radioiodine retention in nuclear facility was experimentally compared with that of silver ion-exchanged synthetic zeolite(AgX), In temperature ranges of$30^{\circ}C$ to $400^{\circ}C$, adsorption capacity of un-impregnated carbon was sharply decreased, but TEDA-impregnated carbon showed similar values of adsorption capacity of AgX even around $100^{\circ}C$. Especially, loading amount of methyl iodide on TEDA carbon up to$250^{\circ}C$ represented higher values compared to un-impregnated carbon. Breakthrough curves of methyl iodide in fixed bed packed with AgX and TEDA-impregnated carbon at high temperature was compared. Removal mechanism of methyl iodide on AgX was proposed, based on analysis of by-product gas generated from adsorption reaction.

  • PDF

Adsorption Characteristics of Multi-component VOCs Including Poorly Adsorbable Chemicals on Activated Carbonaceous Adsorbents (비흡착성 화합물을 포함하는 다성분 VOCs의 탄소흡착제 흡착특성)

  • Woo, Kwang Jae;Kim, Sang Do;Lee, Si Hyun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.277-285
    • /
    • 2007
  • The adsorption characteristics of multi-component solvent vapors including poorly-adsorbable chemicals such as toluene-xylene-MEK and toluene-MEK-IPA on the activated carbonaceous adsorbents were investigated in a stainless steel fixed bed of 10.2 cm ID and 50 cm in height in order to identify those carbons for eliminating and recovering solvent vapors from industrial emission sources. The used activated carbonaceous adsorbents were pelletized commercial activated carbons and activated carbon fiber. Breakthrough curves and adsorption capacity at atmospheric pressures were obtained. It has been found that non-polar and larger molecules have been adsorbed better than polar and smaller molecules. In special, alcohols and ketones were poorly adsorbed caused by competitive adsorbability in multi-component mixture system. However, it could be overcome by profitable employment of organization of cooperative system which was composed of different porosity activated carbonaceous adsorbents appropriately.

Hydrogels with diffusion-facilitated porous network for improved adsorption performance

  • Pei, Yan-yan;Guo, Dong-mei;An, Qing-da;Xiao, Zuo-yi;Zhai, Shang-ru;Zhai, Bin
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2384-2393
    • /
    • 2018
  • Porous alginate-based hydrogel beads (porous ABH) have been prepared through a facile and sustainable template-assisted method using nano-calcium carbonate and nano-$CaCO_3$ as pore-directing agent for the efficient capture of methylene blue (MB). The materials were characterized by various techniques. The sorption capacities of ABH towards MB were compared with pure sodium alginate (ABH-1:0) in batch and fixed-bed column adsorption studies. The obtained adsorbent (ABH-1:3) has a higher BET surface area and a smaller average pore diameter. The maximum adsorption capacity of ABH-1:3 obtained from Langmuir model was as high as $1,426.0mg\;g^{-1}$. The kinetics strictly followed pseudo-second order rate equation and the adsorption reaction was effectively facilitated, approximately 50 minutes to achieve adsorption equilibrium, which was significantly shorter than that of ABH-1:0. The thermodynamic parameters revealed that the adsorption was spontaneous and exothermic. Thomas model fitted well with the breakthrough curves and could describe the dynamic behavior of the column. More significantly, the uptake capacity of ABH-1:3 was still higher than 75% of the maximum adsorption capacity even after ten cycles, indicating that this novel adsorbent can be a promising adsorptive material for removal of MB from aqueous solution under batch and continuous systems.