• 제목/요약/키워드: Breaking Capacity

검색결과 92건 처리시간 0.033초

강풍 발생 시 국내 가로수의 취약성 분석 (Wind Fragility for Urban Street Tree in Korea)

  • 심 비리야붓;정우영
    • 한국습지학회지
    • /
    • 제21권4호
    • /
    • pp.298-304
    • /
    • 2019
  • 이 논문에서는 한국의 가로수에 대한 바람 취약성을 유도하는 분석 방법을 보여준다. 몬테 카를로 시뮬레이션 방법은 도시 가로수의 파괴 확률을 결정하는 데 사용되었다. 이 확률 결과는 대구 지역의 가로수를 기반으로 4 가지 유형에 대한 바람 취약성 매개 변수를 결정하는 데 사용되었으며, 이로 인해 풍하중에서 가로수 손상 확률에 영향을 미치는 주요 요인이 직경이라는 것을 나타낸다. 또한, 선택된 4 가지 유형 중에서 높이 7m, 직경 35cm의 가로수는 손상률이 제일 낮은 반면, 높이 8m, 직경 30cm의 가로수는 가장 낮은 풍하중에서 저항하였다. 높이 7m의 가로수의 평균 손상 풍속은 직경 30cm 및 35cm에 대해 각각 43.8m/s 및 50.6m/s로 나타났으며, 높이 8m의 가로수의 평균 손상 풍속은 직경 30cm 및 35cm에 대하여 각각 38.7m/s 및 45.4m/s로 나타났다.

전력수급의 신뢰도 확보를 위한 고속 인터럽터 동작 특성 (Operational Characteristics of the High-speed Interrupter for Reliability Enhancement of Power Supply and Demand)

  • 최혜원;최효상;정병익
    • 전기학회논문지
    • /
    • 제62권1호
    • /
    • pp.143-148
    • /
    • 2013
  • When the fault occurs in power system, the fault-current exceeds breaking capacity of the circuit breaker. So, reliablity of the power system is decreased sharply. Superconducting fault-current limiter (SFCL) is operated without impedance in normal state. The fault-current is limited by its impedance during the fault condition. However, the SFCL has several weak points such as huge size, high-price, liquid-nitrogen operation for the real power system. In this paper, We suggested the high-speed interrupter to limit the fault-current in case of the single line-to-ground fault. In addition, we compared the high-speed interrupter with the SFCL to ensure the operation reliability. The proposed interrupter detected the fault-current through the CT, and the power was supplied by operation of the SCR control system. In this experiment, the power of high-speed interrupter was applied after the 4.8[msec] from fault instant. The on-off operation of the interrupter was started after half-cycle from the fault. The fault-current was flowed into the impedance element by the switching operation of the high-speed interrupter. So, the fault current was limited within one cycle, and then it didnt exceed the capacity of a circuit breaker. We confirmed that there was slight difference between the SFCL with high-speed interrupter in terms of limiting-time of the fault-current and switching speed of the SCR. The high-speed interrupter was considered to be more efficient than the SFCL in size, cost or reliability.

Comparison of Innovation Capabilities - The Case of Chinese Regions -

  • Li, Hang;Kim, Sang-Wook
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.225-234
    • /
    • 2022
  • 혁신은 지역의 경쟁력을 높이는데 있어서 중요한 역할을 할뿐만 아니라 중진국의 함정에서도 빠져 나올 수 있는 역할을 할 수 있다. 본 논문은 중국의 지역별 혁신역량을 비교하기 위해 혁신 투입, 혁신 산출, 혁신 환경의 관점에서 지역혁신지수를 구성하고, 주성분 분석과 클러스터 분석을 이용하여 2006년부터 2019년까지 중국 31개 성, 직할시, 자치구의 지역혁신지수를 추정하였다. 추정결과에 따르면 중국의 지역혁신역량은 지역별 차이가 크며 혁신역량이 높은 지역은 주로 지역경제발전 수준이 상대적으로 높은 동남 연해안 지역에 집중되어 있다. 이는 혁신역량과 지역경제발전 수준과 관계가 있음을 나타낸다. 군집분석은 31개의 지역을 5개 유형으로 분류하였다. 분류결과에 의하면 지역경제발전 수준이 상대적으로 높은 연해안 지역의 혁신역량이 높고 이는 이들 지역이 입지적인 우위와 국가정책에서의 우위를 가지고 있기 때문이다.

원위치파쇄기층화 공법의 실용화를 위한 장비개발 및 시험시공 (Research on Practical Rubblization in PCC Pavements Equipment Development and Test Construction)

  • 이승우;한승환;고석범;김지원
    • 대한토목학회논문집
    • /
    • 제26권1D호
    • /
    • pp.81-87
    • /
    • 2006
  • 노후화된 콘크리트 포장 슬래브를 원위치에서 파쇄하여 기층재료로 활용하고 그 위에 덧씌우기 포장을 건설하는 원위치파쇄기층화 공법은 반사균열 문제를 완벽하게 해결할 수 있는 장점 때문에 미국에서는 성공적으로 사용되어왔다. 국내 콘크리트포장은 미국에 비하여 포장두께가 두껍고, 린콘크리트 보조기층을 사용하는 특이점을 가지고 있어 이 공법의 국내 적용시 시공성과 경제성을 확보하는 것이 필요하다. 따라서 국내 포장조건에 적합한 Multi-Head형식의 파쇄장비를 개발하였다. 이 장비는 반사균열을 제어하면서 우수한 지지력을 가진 기층으로 파쇄 되도록 설계되었다. 폐도와 사용중인 고속도로에 개발된 원위치 파쇄장비를 이용하여 시험시공을 수행하였으며, 시험시공 결과, 설계에서 목표한 파쇄골재 입경과 파쇄깊이로 노후 콘크리트포장을 파쇄하였으며, 매우 높은 지지력을 확보한다는 것을 확인할 수 있었다. 일반적인 재포장에 비하여 우수한 시공성과 경제성의 확보가 가능함을 보였다.

BDU 신뢰성 검증 (Reliability Verification of Battery Disconnecting Unit)

  • 윤혜림;유행수;박지홍;박홍태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.866-867
    • /
    • 2011
  • As part of the green growth, The Green Car has attracted wide attention. Types of the Green Car are Electric Vehicle, Plug-in Hybrid Electric Vehicle, Hybrid Electric Vehicle, Fuel Cell Vehicle and Clean Diesel Vehicle. Of these, The electric vehicle is equipped with the BDU(Battery Disconnecting Unit). BDU is supplying stable battery power and blocking it to protect electrical system of the electric vehicle. The BDU consists of electric components such as current sensor, fuse and pre-charge resistor. These must pass Voltage withstand test, Salt mist test, Thermal shock test, Vibration test and Short-circuit test commonly to verify reliability of the electric components. In addition, The current sensor should be verified whether normal operation. The breaking capacity of fuse should be verified. The durability of pre-charge resistor should be verified by supplying battery power and blocking it repeatedly. The reliability of BDU as well as the electric vehicle is secured by verifying the reliability of electric components. In addition, It will contribute to the acceleration and promotion of Green Car Technology.

  • PDF

초고압 $SF_6$ 가스차단기의 소전류 차단성능 해석기술 I (Evaluation Method I of the Small Current Breaking Performance for SF(sub)6-Blown High-Voltage Gas Circuit Breakers)

  • 송기동;이병운;박경엽;박정후
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권7호
    • /
    • pp.331-337
    • /
    • 2001
  • With the increasing reliability of analysis schemes and the dramatically increased calculating speed, the computer simulation has become and indispensable process to predict the interruption capacity of circuit breakers. Generally, circuit breakers have to possess both the small current and large current interruption abilities and the circuit breaker designers need to evaluate its capacities to save the time and the expense. The analysis of small current and the large current interruption performances have been considered separately because the phenomena occurring in a interrupter are quite different. To analyze the dielectric recovery after large current interruption many physical phenomena such as heat transfer, convection and arc radiation, the nozzle ablation, the ionization of high temperature SF(sub)6 gas, the electric and themagnetic forces and so forth mush be considered. However, in the analysis of small current interruption performance only the cold gas flow analysis needs to be carried out because the capacitive current is to small that the influence from the current can be neglected. In this paper, an empirical equation which is obtained from a series of tests to estimate the dielectric recovery strength has been applied to a real circuit breaker. The results of analysis have been compared with the test results and the reliability has been investigated.

  • PDF

저압차단기기의 보호협조 (The Protective Co-ordination between Low-Voltage Circuit-Breaker)

  • 박성찬;오준식;이방욱;유만종;서정민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.340-343
    • /
    • 2001
  • In an electrical network, electrical power are transmitted by a various of protection, isolation and control electric circuit devices. This thesis deals with the protection function between circuit-breakers. The protective coordination concerns the behaviour of two devices placed in series in an electrical network, with a short-circuit downstream circuit-breaker. It has two basic principles: First, discrimination which is an increasing requirement of low voltage electrical distribution systems. Second, which is less well known: cascading, which consists of installing a device, whose breaking capacity is less than the three-phase short-circuit current at its terminals and helped by main circuit-breaker. The important advantage of cascading is to be able to install at a branch circuit-breaker of a lesser performance without endangering the safety of the installation for more economical usage. To determine and guarantee co-ordination between two circuit breakers, it is necessary to carry out a theoretical approach, first, and then confirm the results by means of standard tests. This is illustrated in appendix A of IEC 947-2.

  • PDF

지/단락실증시험에서 MW급 계통연계형 ESS 절연/보호시스템 성능 분석에 관한 연구 (Analysis on Insulation and Protection Characteristics of Grid Connected ESS in Ground/Short-Circuit Fault)

  • 김진태;이승용;박상진;차한주;김수열
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권2호
    • /
    • pp.119-122
    • /
    • 2020
  • With recent ESS (Energy Storage System) fire accident, the fault protection performance is becoming more important. However, there has never been any experiments with the protection performance on the faults in the ESS system level. In this study, the effect of AC ground fault and IGBT (Insulated Gate Bipolar mode Transistor) short-circuit failure on MW class ESS was performed experimentally for the first time in the world. First of all, the effect of the AC single line ground fault on battery was analyzed. Moreover, the transient voltage was investigated as a function of the battery capacity and the power level. Finally, the breaking capability and insulation performance of ESS were examined under PCS short-circuit fault condition. Through the tests, it was found that ESS protection system safely blocked the faulty current regardless of the faults, whereas the electronic parts such as IGBT and MC (Magnetic Contactor) were broken by the fault current. Also, the electrical breakdown in ESS resulted from the transient voltage during the protection process.

종자계형 진공 인터럽터에서 접점전극 슬릿의 영향에 관한 연구 (A Study on the Effect of the Contact Electrode Slits in the Vacuum Interrupter with Axial Magnetic Field Type)

  • 하덕용;강형부;최승길;최경호
    • 한국전기전자재료학회논문지
    • /
    • 제15권9호
    • /
    • pp.822-829
    • /
    • 2002
  • This paper deals with the distribution characteristics of the current density and axial magnetic flux density for each slits made on the contact electrode in the vacuum interrupter with axial magnetic field type using 3-dimension finite element analysis. It has been known that the presence of an axial magnetic field parallel to the current flow in the arc plasma can increase the high current breaking capacity of vacuum interrupter by carrying out the arc plasma from constricted mode to diffusion mode. The axial magnetic field is created of itself by current flow in the segments of coil electrode behind the contact electrode. The analyzed results show that if the slits are made in the contact electrode, they can increase the current density and axial magnetic flux density in the contact electrode surface and at the gap distance, which is due to decrease the effect of eddy currents flowing in the contact electrode. The phase shift due to eddy currents, defined 3s time difference between the maximum value of current and axial magnetic field, is decreased still more by increasing the number of slits made in the contact electrode at the center point of gap distance. These results demonstrate that 3-dimension finite element analysis has a great deal of merits in the development and evaluation of new electrode at the design of vacuum interrupter.

3차원 유한요소해석을 이용한 종자게형 진공 인터럽터의 특성고찰 (A Study of the Characteristics on the Vacuum Interrupter with Axial Magnetic Field Type using 3 Dimension Finite Element Analysis)

  • 하덕용;강형부
    • 한국전기전자재료학회논문지
    • /
    • 제15권5호
    • /
    • pp.460-467
    • /
    • 2002
  • This paper deals with the distribution characteristics of the current density and axial magnetic flux density on the vacuum interrupter with axial magnetic field type using 3 dimension finite element analysis. An axial magnetic field parallel to the current flow in the arc column can improve the current breaking capacity of vacuum interrupter by affecting the arc mode. The axial magnetic flux density on the contact electrode surface is analyzed by inputting external current as a function of the transient time for sine half wave. And it also is analyzed within the gap distance of the contact electrode. The peak value of current but is decreased with the descending current on the contact electrode surface and within the gap distance of the contact electrode. The residual magnetic field is generated on the contact electrode surface and within the gap distance in the instant of zero current, which is due to the influence of eddy currents. The phase shift due to eddy currents, defined as time difference between the maximum value of current and axial magnetic field, is about 1ms in the center point of gap distance.