• Title/Summary/Keyword: Breakdown strength

Search Result 522, Processing Time 0.03 seconds

Copper Particle Effect on the Breakdown Strength of Insulating Oil at Combined AC and DC Voltage

  • Wang, You-Yuan;Li, Yuan-Long;Wei, Chao;Zhang, Jing;Li, Xi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.865-873
    • /
    • 2017
  • Converter transformer is the key equipment of high voltage direct current transmission system. The solid suspending particles originating from the process of installation and operation of converter transformer have significant influence on the insulation performance of transformer oil, especially in presence of DC component in applied voltage. Under high electric field, the particles easily lead to partial discharge and breakdown of insulating oil. This paper investigated copper particle effect on the breakdown voltage of transformer oil at combined AC and DC voltage. A simulation model with single copper particle was established to interpret the particle effect on the breakdown strength of insulating oil. The experimental and simulation results showed that the particles distort the electric field. The breakdown voltage of insulating oil contaminated with copper particle decreases with the increase of particle number, and the breakdown voltage and the logarithm of particle number approximately satisfy the linear relationship. With the increase of the DC component in applied voltage, the breakdown voltage of contaminated insulating oil decreases. The simulation results show that the particle collides with the electrode more frequently with more DC component contained in the applied voltage, which will trigger more discharge and decrease the breakdown voltage of insulating oil.

Analysis of Insulating Reliability in Epoxy Composites using Weibull Distribution Equation (와이블 분포식을 이용한 에폭시 복합체의 절연 신뢰도 분석)

  • Park, No-Bong;Lim, Jung-Kwan;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.813-816
    • /
    • 2003
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were applied to Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased, the stronger breakdown strength became at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of filled specimens with treating silane, the breakdown strength become much higher. Finally, according to Weibull distribution analysis, reducing breakdown probability of equipment insulation lower than 0.1 % level requires the allowable field intensity values to be kept under 21.5 MV/cm.

  • PDF

Evaluation of Insulating Reliability in Epoxy Composites

  • Park, No-Bong;Yang, Dong-Bok;Lim, Jung-Kwan;Park, Yong-Pil;Lee, Hee-Kab;Kim, Gui-Yeul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1200-1203
    • /
    • 2003
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were applied to Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased, the stronger breakdown strength became at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of filled specimens with treating silane, the breakdown strength become much higher. Finally, according to Weibull distribution analysis, reducing breakdown probability of equipment insulation lower than 0.1% level requires the allowable field allowable field intensity values to be kept under 21.5 MV/cm.

  • PDF

Analysis of Insulating Reliability in Epoxy Composites Using Weibull Distribution Equation (와이블 분포식을 이용한 Epoxy 복합체의 절연 신뢰도 해석)

  • 임중관;박용필;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.8
    • /
    • pp.647-651
    • /
    • 2001
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were applied to Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased, the stronger breakdown strength became at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric filed is concentrated. In the case of filled specimens with treating silane, the breakdown strength become much higher. Finally, from the analysis of weibull distribution, it was confirmed that to low allowed breakdown probability under 0,.1%, the applied field value needed to be under 21.5MV/cm.

  • PDF

Breakdown Characteristic of Transformer Oil Depending on Tip Radius (침전극 곡률 반경에 따른 절연유의 절연파괴 특성)

  • Lee, J.S.;Jeong, S.H.;Lee, H.K.;Lim, K.J.;Kim, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1478-1480
    • /
    • 1997
  • We investigated the breakdown characteristic of mineral oil according to applied voltage and tip radius. In this experiment, electrode system was point-plane geometry. The tip radius of needle was 5, 10, 20 and $25{\mu}m$, respectively. Applied voltage was AC and DC. We measured breakdown voltage for each tip radius with increasing electrode gap, 2mm to 10mm. Under nonuniform electric field, breakdown strength was higher when needle was negative than when needle was positive. Because it is polarity effects due to space charge. And the more sharp tip radius, whether we applied AC or DC, the higher breakdown strength. As tip radius increase, breakdown strength decreases exponentially.

  • PDF

A study on the repeated breakdown field strength of compressed $SF_{6}$ in uniform field perturbed by protrusion (교란된 평등전계에서 고기압 $SF_{6}$ 가스의 연속절연 파괴강도에 관한 연구)

  • 이동인
    • 전기의세계
    • /
    • v.29 no.2
    • /
    • pp.129-132
    • /
    • 1980
  • For large gas-insulated systems, the conductor utilized possess some degree of surface roughness which locally enhances the applied field at highpressure in $SF_{6}$. In order to investigate the effect of field enhancement on the breakdown field strength, the spheric protrusion was employed which gives a quantitative analysis on field enhancement. For further investigations on the breakdown level and polarity effect in $SF_{6}$, the repeated breakdown tests were performed with d.c. voltage at pressures up to about 4 bar. The experimental results show that the breakdown level does vary noticeably due to successive voltage applications and the breakdown field strength measured for a test gap with the cathode protrusion is markedly lower than that determined from the identical anode protrusion.

  • PDF

A Study on Improvement of Electric Breakdown Properties due to Interface Treatment Effect of Epoxy/SiO$_2$ Composite Materials (Epoxy/SiO$_2$복합재료의 계면 처리 효과에 따른 절연 파괴 특성 개선에 관한 연구)

  • 김명호;박창옥;박재준;김경환;김재환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.102-104
    • /
    • 1990
  • In this paper, we studied and investigated as to temperature dependence of dielectric breakdown properties, and the dielectric breakdown properties, and deterioration-proof properties due to interface treatment effect. In the result, we knew that temperature dependence of dielectric breakdown strength due to filler content was decreased, identified that D.C. dielectric breakdown strength was improved at the filler content 50[%]. When the D.C. voltage was applied to the non silane and silane treated specimens deal with mechanical deterioration, the dielectric breakdown strength was improved at the 150[%].

The variation of water absorption rate and DC dielectric breakdown strength of Epoxy composites due to filler content (충진재 함량 변화에 따른 에폭시 복합재료의 흡수율과 직류 절연파괴강도의 변화)

  • Lee, D.J.;Kim, T.Y.;Shin, S.K.;Kim, M.H.;Kim, K.H.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2349-2351
    • /
    • 1999
  • In this paper, the variable absorption rates and DC dielectric breakdown strength of epoxy composites were measured at boiling absorption condition in order to observe the influences of moisture in out door use. Also, in order to improve withstand voltage properties at moisture absorbtion condition. IPN (interpenetrating polymer network) method which had been already reported, was introduced and the influence was investigated. As a result, it was confirmed that the moisture absorption rate was increased and DC dielectric breakdown strength was degraded with boiling time and filler content increasing. On the other hand, it was confirmed that moisture absorption rate and DC dielectric breakdown strength degrading rate were lowered by the improvement of adhesion strength In IPN specimens.

  • PDF

A Study on Improvement of DC Breakdown Strength due to Interface Treatment Effect of Epoxy/$SiO_2$ Compund Material for Electrical installation (전기설비용 Epoxy/$SiO_2$ 복합재료의 계면처리 효과에 따른 직류 절연파괴 강도의 개선에 관한 연구)

  • 김재환;박창옥;김경환;김명호
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.2
    • /
    • pp.51-55
    • /
    • 1992
  • In this study as treating to filter silance coupling agent (KM-6030 improving coupling strength between matrix resin (bisphenole-A type epoxy resin) and filler (SiO2), breakdown strength was investigated on cases applying DC voltage to specimen. In the case on DC voltage, breakdown strength was improved bout 12.73% and 10.77% in specimen of 5[wt%] and 50[wt%] of filler content of 10 of epoxy. Therefore, it was investigate the effect that concentration of coupling agent and content of filler was influential on breakdown strength of epoxy resin.

  • PDF

A Study on Mechanical and Electrical Properties at Interfaces Between Epoxy and ifs Molded Metal (에폭시 매입금구 표면거칠기에 따른 전기적, 기계적 특성 연구)

  • 김수연;하영길;이성진;김영성;박완기;김성진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.226-229
    • /
    • 1999
  • Epoxy compound has been used as insulation material in electrical equipment for a long time because of its excellent electrical, mechanical and chemical properties. Nowdays, becoming higher voltage system, the properties of interface between epoxy and metal insert become more important. The breakdown voltage of epoxy compound for electric material is variable according to the surface roughness of metal insert. Generally, with metal insert sanding, the adhesion strength is enhanced and the breakdown strength is reduced. But in this study, we knew that the adhesion strength became enhanced but the breakdown strength didn\`t reduced with metal insert sanding. So in this study sanding. So in this study, we suggest the optimum interface condition by adjusting the surface roughness.

  • PDF